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Many clinical readers, especially those uncomfortable with math-
ematics, treat published multivariable models as a black box,
accepting the author’s explanation of the results. However, mul-
tivariable analysis can be understood without undue concern for
the underlying mathematics. This paper reviews the basics of
multivariable analysis, including what multivariable models are,
why they are used, what types exist, what assumptions underlie

them, how they should be interpreted, and how they can be
evaluated. A deeper understanding of multivariable models en-
ables readers to decide for themselves how much weight to give
to the results of published analyses.
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Most published medical research uses multivariable
analysis. Unfortunately, many readers, especially

those uncomfortable with mathematics, treat multivariable
models as a black box, accepting the author’s explanation
of the results without independently assessing whether the
models are correctly constructed or interpreted. However,
multivariable models can be understood without undue
concern for the underlying mathematics. I review the ba-
sics of multivariable analysis, including why multivariable
models are used, what types exist, what assumptions un-
derlie them, how they should be interpreted, and how they
can be evaluated.

WHAT IS MULTIVARIABLE ANALYSIS?
Multivariable analysis is a statistical tool for determin-

ing the unique contributions of various factors to a single
event or outcome. For example, numerous factors are as-
sociated with the development of coronary heart disease,
including smoking, obesity, sedentary lifestyle, diabetes, el-
evated cholesterol level, and hypertension. These factors
are called risk factors, independent variables, or explanatory
variables. Multivariable analysis allows us to determine the
independent contribution of each of these risk factors to
the development of coronary heart disease (called the out-
come, the dependent variable, or the response variable).

WHY IS MULTIVARIABLE ANALYSIS NEEDED?
In many clinical situations, experimental manipulation

of study groups would be unfeasible, unethical, or imprac-
tical. In these circumstances, multivariable analysis can be
used to assess the association between multiple risk factors
and outcomes. For example, we cannot test whether smok-
ing increases the likelihood of coronary heart disease by
randomly assigning persons to groups who smoke and
groups who do not smoke. Although bivariate analysis of
longitudinal data demonstrates that smokers are more
likely than nonsmokers to develop coronary heart disease,
this is weak evidence of a causal association. Perhaps the
only reason smokers are more likely to develop coronary
heart disease is that they are more likely to be male, live in
poverty, and have a sedentary lifestyle. In other words, the

relationship between smoking and coronary artery disease
may be confounded by these other variables.

Confounding occurs when the apparent association
between a risk factor and an outcome is affected by the
relationship of a third variable to the risk factor and to the
outcome; the third variable is a confounder. For a variable
to be a confounder, the variable must be associated with
the risk factor and causally related to the outcome (Figure
1). Male sex, poverty, and sedentary lifestyle could be con-
founders because they are associated with both smoking
and coronary heart disease. With multivariable analysis, we
can demonstrate that even after adjusting for male sex,
poverty, and sedentary lifestyle, smoking has an indepen-
dent relationship with coronary artery disease (Figure 2).

A study of the association between periodontal disease
and coronary heart disease illustrates how multivariable
analysis can be used to identify confounders (2). Bivariate
analysis demonstrates that persons with periodontitis have
a markedly increased rate of coronary heart disease (relative
hazard, 2.66 [95% CI, 2.34 to 3.03]). If this relationship
were independent and causal, then interventions that
would reduce periodontitis would decrease the occurrence
of coronary heart disease. However, periodontitis is also
associated with several factors known to be related to cor-
onary heart disease, including older age, male sex, poverty,
smoking, increased body mass index, and hypertension,
raising the question of whether the association between
periodontitis is due to confounding by these factors (Fig-
ure 3). With multivariable adjustment for these variables,
sampling design, and sampling weights, the association be-
tween periodontitis and coronary heart disease weakens
substantially: the relative hazard decreases to 1.21; the 95%
CIs for the relative hazard (0.98 to 1.50) crosses 1.0; and
the association between periodontitis and coronary artery
disease is no longer statistically significant.

Although one can theoretically distinguish indepen-
dent associations from confounding, a variable may have
both an independent effect on outcome and be a con-
founder of another variable’s relationship to outcome. For
example, poverty is a confounder of the relationship be-
tween smoking and coronary artery disease (poor people
are more likely to smoke and to develop coronary artery
disease), but poverty also has an independent effect on
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development of coronary artery disease (after adjustment
for smoking, cholesterol level, and other known risk fac-
tors, poor persons are more likely to develop coronary ar-
tery disease).

Multivariable analysis is not the only statistical
method for eliminating confounding. Stratified analysis can
also assess the effect of a risk factor on an outcome while
holding other variables constant, thereby eliminating con-
founding. For example, the effect of periodontitis on cor-
onary heart disease can be examined separately for men and
women, which removes the effect of sex on the relationship
between these diseases. If periodontitis is no longer signif-
icantly associated with coronary heart disease when men
and women are looked at separately, then sex was con-
founding the relationship between the two. If periodontitis
is still associated with coronary heart disease when men
and women are assessed separately, then the effect of peri-
odontitis on coronary heart disease is independent of sex.

Stratification works well when there are only two or
three confounders. However, when there are many poten-
tial confounders, stratifying for all of them will create lit-
erally hundreds of groups in which the investigators would
need to determine the relationship between periodontitis
and coronary heart disease. Because the sample sizes would
be small, the estimates of risk would be unstable.

Whether investigators use multivariable analysis or
stratification, it is important to remember that they can
only adjust for measured variables. Results may still be
confounded by known and unknown unmeasured factors.

WHAT TYPES OF MULTIVARIABLE ANALYSIS ARE

COMMONLY USED IN CLINICAL RESEARCH?
The three types of multivariable analysis that are com-

monly used in clinical research are multiple linear regres-
sion, multiple logistic regression, and proportional hazards
(Cox) regression (Table). Linear regression is used with
interval (also called continuous) outcomes (such as blood
pressure). With interval variables, equally sized differences
on all parts of the scale are equal. Blood pressure is an
interval variable because the difference between a blood
pressure of 140 and 143 mm Hg (3 mm Hg) is the same as
the difference between a blood pressure of 150 and 153
mm Hg (3 mm Hg). Logistic regression is used with di-
chotomous outcomes (yes or no; for example, death). Pro-
portional hazards regression is used when the outcome is

the length of time to reach a discrete event (such as time
from baseline visit to death).

HOW IS THE EFFECT OF AN INDIVIDUAL VARIABLE ON

OUTCOME ASSESSED IN A MULTIVARIABLE ANALYSIS?
The regression coefficient for each variable must be

estimated by fitting the model to the data and adjusting for
all other variables in the model. With logistic regression
and proportional hazards regression, the coefficients have a
special meaning. The antilogarithm of the coefficient
equals the odds ratio (for logistic regression) and the rela-
tive hazard (for proportional hazards regression). The haz-
ard is the probability that a person experiences an outcome
in a short time interval, given that the person has survived
to the beginning of the interval. When the outcome is
uncommon (�15%), the odds ratio and relative hazard are
reasonable estimates of the relative risk. For example, if the
odds ratio or relative hazard for the association between
smoking and fatal heart attacks is 3.0 (assuming that fatal
heart attacks occurred in �15% of patients), then smoking
roughly triples the risk for a fatal heart attack. If the odds
ratio or relative hazard for the association between estrogen
use and development of a pathologic fracture is 0.33, then
persons who take estrogen have roughly a third of the risk
for fracture as persons who do not take estrogen.

When the outcome is common, the odds ratio remains
a useful measure of association, but it does not approxi-
mate the relative risk. For example, a randomized trial of
persons with bronchopulmonary aspergillosis showed bet-
ter response to itraconazole (13 of 28 patients) than to
placebo (5 of 27 patients) (3). The odds ratio is 4.7
[(13 � 27)/(15 � 5)], but the relative risk is only 3.0 [(13/
28)/(5/32)].

With interval-independent variables, the coefficient
and the resulting odds ratio or relative hazard can be mis-
understood. For example, an observational study reported
that the odds ratio for the effect of low-density lipoprotein
cholesterol on coronary artery calcification was 1.01 (CI,
1.00 to 1.02) (4). This may seem like a trivial effect until
you notice that the odds ratio of 1.01 is for each increase of
1 mg/dL of low-density lipoprotein cholesterol. An in-
crease of 40 mg/dL of cholesterol would produce an odds
ratio of 1.49 (1.01)40. This example demonstrates that the

Figure 1. Relationship among risk factor, confounder, and
outcome.

Reprinted with permission from Cambridge University Press, Cam-
bridge, United Kingdom (1).

Figure 2. Multivariable association between four risk factors
and coronary artery disease.

The thicker arrow indicates that smoking is associated with coronary
heart disease, even after adjustment for male sex, poverty, and sedentary
lifestyle.
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size of the coefficient of an interval variable is entirely de-
pendent on the units being used.

With interval-independent variables, readers must also
assess whether the model accurately captures the relation-
ship between the variable and the outcome. Multivariable
models assume that increases (or decreases) in an interval-
independent variable will be associated with increases (or
decreases) in the outcome variable. However, what if this is
not the case? For example, there is a J-shaped relationship
between alcohol consumption and mortality; nondrinkers
and heavy drinkers have higher rates of mortality than do
moderate drinkers. Readers would miss this important ef-
fect if alcohol consumption were entered into a logistic
regression model (as an untransformed interval variable) to
predict mortality. The analysis might instead indicate that
there is no association between the two (the lower and
higher levels of alcohol consumption could cancel each
other out).

If independent variables are left in their interval form,
a discrete increase (or decrease) anywhere along the scale
must have an equal effect on the outcome (5). Thus, if an
increase of systolic blood pressure from 150 to 160 mm Hg
is associated with a 50% increase in stroke, an increase of
blood pressure from 100 to 110 mm Hg must also be
associated with a 50% increase in stroke. However, for
many clinical variables, including blood pressure, increases
(or decreases) may be relevant only after a particular threshold.

Because researchers usually do not report whether they
have assessed the relationship of an interval-independent
variable to the outcome over the range of values for the
independent variable, it can be difficult for readers to in-
dependently judge this aspect of the analysis (5). For this
reason, readers may prefer articles that use multiple dichot-
omous variables (also called dummy variables), since these
allow readers to assess the effect of the risk factor on out-

come for a broad range of values of the risk factor. For
example, the relationship between weekly alcohol con-
sumption and death was modeled in one study by using
multiple dichotomous variables: 0 drinks (relative risk, 1.0
[referent]), 1 to 7 drinks (relative risk, 0.82), 8 to 21 drinks
(relative risk, 0.82), 22 to 35 drinks (relative risk, 1.00),
and more than 35 drinks (relative risk, 1.10) (6).

WHAT ASSUMPTIONS UNDERLIE MULTIVARIABLE

MODELS?
Multivariable models are mathematical expressions.

We choose particular models because we believe that the
data will follow the form of that model. If the model does
not fit the data, our understanding of the data will be
distorted.

The underlying assumption of multiple linear regres-
sion is that, as the independent variables increase (or de-
crease), the mean value of the outcome increases (or de-
creases) in a linear fashion. For example, a linear
combination of age and body mass index is a good predic-
tor of bone density in postmenopausal women. Although
the relationship between the independent variable and the
outcome must be linear, nonlinear relationships can be
modeled by transforming the variables so that the indepen-
dent variables have a linear relationship to the outcome.
Logarithmic and spline transformations are often used to
model nonlinear relationships.

Logistic regression models the probability of an out-
come and how that probability changes with a change in
the predictor variables. The basic assumption is that each
one-unit increase in a predictor multiplies the odds of the
outcome by a certain factor (the odds ratio of the predic-
tor) and that the effect of several variables is the multipli-
cative product of their individual effects. The logistic func-
tion produces a probability of outcome bounded by 0 and 1.

Proportional hazards models assume that the ratio of
the hazard functions for persons with and without a given
risk factor is the same over the entire study period. This is
known as the proportionality assumption (1, 7–9). Take, for
example, a study that compares surgery to watchful waiting
in patients with carotid artery stenosis. To fulfill the pro-
portional hazards assumption, the ratio between the hazard
of death with watchful waiting and the hazard of death
with surgery should be constant over the course of the
study. If the hazard of death is greater with surgery at the

Figure 3. Potential confounders of the relationship between
periodontitis and coronary heart disease.

Table. Types of Multivariable Analysis

Type Use Special Feature

Multiple linear regression Interval outcome Variable coefficients have a linear
relation with outcome

Logistic regression analysis Dichotomous outcome Model constrains probability of
outcome to 0 to 1

Proportional hazards regression Length of time to a discrete event Useful for longitudinal studies in
which persons may be lost to
follow-up
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beginning of the study, then the hazard of death should
also be greater in the later follow-up period. It would be a
violation of the proportionality assumption if the hazard of
death were higher with surgery at the beginning of the
study (as is often the case with surgical interventions be-
cause of perioperative mortality) but lower with surgery
later in the study (because persons who survived after sur-
gery had a longer life expectancy as a result of the beneficial
effects of carotid endarterectomy).

If the hazard of death associated with surgery were
higher at the beginning of the study and lower later in the
study, the model could indicate that the risk for death
(relative hazard of 1) did not differ between surgery and
watchful waiting. The reason is that the higher short-term
mortality associated with surgery would be averaged with
the lower long-term mortality to produce a null finding.
However, a finding of “no difference” would be a mislead-
ing way of characterizing that surgery has a higher short-
term but lower long-term mortality.

When the data do not support the proportionality as-
sumption, proportional hazards analysis can still be per-
formed by using time-varying covariates. Time-varying co-
variates, also called time-dependent covariates, are independent
variables whose values change over time (1). With time-
varying covariates, the model can correctly account for haz-
ard ratios that vary over the course of the study.

A major advantage of proportional hazards analysis is
that it includes persons with varying lengths of follow-up.
Length of follow-up often varies in longitudinal studies for
several reasons, including persons being lost to follow-up;
persons developing a condition that precludes their evalu-
ation for the study’s outcome of interest; and persons being
enrolled at different times (10). A person who does not
experience the outcome of interest by the end of the study
is considered censored.

In proportional hazards analyses, it is assumed that
censored persons have had the same course (as if they had
not been censored) as persons who were not censored. In
other words, the losses occur randomly, independent of
outcome. This assumption allows the follow-up time of
censored persons to be included into the analysis. How-
ever, losses sometimes occur because of a systematic bias.
This is the case when persons lost to follow-up are more
likely to have experienced the outcome of interest than
persons not lost to follow-up. For example, a randomized,
controlled trial of zidovudine in HIV-infected persons re-
ported that the condition of patients lost to follow-up was
more likely to be deteriorating at the time these patients
left the study than patients who stayed in the study (11).

Multiple linear regression, logistic regression, and pro-
portional hazards models all assume that observations are
independent of one another. In other words, these models
cannot incorporate the same outcome occurring more than
once in the same person. Although some outcomes (such as
cancer) rarely occur in one patient more than once during
the follow-up period, other outcomes may occur repeatedly

to the same patient. For example, a patient may have mul-
tiple urinary tract infections during a follow-up period
(12). In these situations, researchers may use generalized
estimating equations that adjust for the correlation be-
tween repeated observations of the same patients (13).
Generalized estimating equations are also used to assess
outcomes that may occur in more than one body part. For
example, generalized estimating equations were used to as-
sess determinants of osteoarthritis developing in either the
left or right knee (14).

DOES THE MODEL FIT THE DATA?
Residual analysis is the best way to assess whether a

model fits the data. Residuals are the differences between
the observed and the estimated values (1, 15). They can be
thought of as the error in estimation. Large residuals sug-
gest that the model does not fit the data. It may be that
certain variables should be transformed (discussed earlier)
or the correct variables are not included in the model (dis-
cussed later). Unfortunately, journals rarely print residual
plots; readers must assume that the investigators reviewed
them.

ARE THE CORRECT VARIABLES IN THE MODEL?
At a minimum, each multivariable model should in-

clude the risk factor or factors and potential confounders.
However, deciding which potential confounders to include
is neither standard nor straightforward. Therefore, readers
need to pay close attention to which variables are included
in and excluded from the model.

Ideally, models should include all variables that have
been hypothesized on theoretical grounds or that have
been shown in previous research to be confounders of the
relationship being studied. For example, a study assessing
whether microalbuminuria predicted cardiovascular death
included age, sex, smoking status, hypertension, dyslipide-
mia, diabetes, abdominal obesity, and creatinine levels in
the proportional hazards model (16).

Although researchers should err on the side of includ-
ing potentially important variables in the analysis, it is im-
portant to exclude extraneous ones. For example, seat belt

Figure 4. An interaction effect.

The effect of the risk factor on outcome (solid lines) differs depending on
the value of the interaction variable. The dotted line is the average of the
two effects. Adapted with permission from Cambridge University Press,
Cambridge, United Kingdom (1).
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use should not be included in a model predicting HIV
prevalence, even though it may well be associated with
safer-sex practices. The reason is that seat belt use is not on
the causal pathway between behavior and HIV infection.
When the data set includes highly similar variables, only
one should be chosen. For example, a study of neonatal
mortality showed that birth weight and gestational age
were too closely related to one another for both to be
included in the model (17). The investigators excluded
gestational age because more data were missing for this
variable than for birth weight.

In deciding how many variables to include in a model,
it is important to distinguish between two purposes for
models: explanatory and predictive (18, 19). In an explan-
atory model, the goal is to correctly characterize the rela-
tionship of each predictor to the outcome variable. For that
purpose, the identities of the variables in the model are
critical, and the analyst must take great care in choosing
which variables to include and in what mathematical form.
Predictive models aim to calculate a probability that an
event will occur, and as long as the model performs well in
different settings, the number and identity of the variables
in the model are not important. In other words, the accu-
racy of a predictive model’s output is more important than
the details of its inputs.

The number of variables in a model are often reduced
by using automatic variable selection algorithms. These al-
gorithms allow the computer to choose the variables to be
included in the model, based on criteria specified by the
investigator. Variable selection methods include forward
stepwise selection, backward deletion, and best subset. For
forward stepwise selection, the variable with the strongest
association with the outcome is entered first, followed by
the next strongest, until all variables that are related to the
outcome (at a significance level specified by the investiga-
tor) are entered into the model. Any variable that has been
entered into the model but that is no longer significant
when the other variables have been added to the model will
be sequentially deleted. For backward deletion, all variables
are entered into the model and are sequentially deleted
starting with the variable having the weakest association
with the outcome and continuing until the only variables
left in the model are those related to the outcome (at a
significance level specified by the investigator). For best
subset, the subset of variables that maximizes the specifica-
tions chosen by the investigator are entered into the model.

Although automatic variable selection techniques of-
ten produce models with a smaller number of independent
variables, they have important limitations (20, 21). Readers
may not be able to tell whether all important confounders
have been included in the model. For example, a survey of
oncologists’ views about euthanasia (22) reported that
“Predictors of support for physician-assisted suicide and
euthanasia were identified by using stepwise logistic regres-
sion analysis . . . [with] selection criteria for entry into the
model . . . set at an alpha level of 0.005.” The authors

found that five factors were associated with oncologists’
being less likely to support euthanasia: reluctance to in-
crease the morphine dose for a hypothetical patient, suffi-
cient time, religiosity, being Catholic, and not being a sur-
gical oncologist. Age and year of graduation from medical
school were not included in the model because they did
not meet the criteria of being associated with supporting
euthanasia at a P value less than 0.05. This omission may
be important because older physicians are more likely to be
religious and less likely to support euthanasia. The authors
state that attitudes toward euthanasia did not differ by age
and year of graduation, but observational studies often
have variables that are only weakly associated with out-
come when tested singly but are strongly associated with
outcome when tested jointly. To eliminate this possibility,
the investigators should have rerun the analysis with all
variables in the model (their sample size was large enough).

Another problem with automatic variable selection
techniques is that the variables that are retained in the
model are not necessarily clinically more important than
the variables that are excluded. If two variables are signifi-
cantly associated with one another, the model will proba-
bly choose the one with the better statistical characteristics.
For these reasons and the fact that automatic methods have
a high probability of generating spurious findings, statisti-
cians strongly discourage their use for any purpose other
than as an exploratory tool (23).

HOW SHOULD INTERACTIONS BETWEEN INDEPENDENT

VARIABLES BE INTERPRETED?
An interaction occurs when the effect of a risk factor

on an outcome is changed by the value of a third variable.
As shown in Figure 4, the effect of a risk factor on out-
come differs depending on the value of the interaction
variable. Because the value of the third variable changes the
effect of the risk on an outcome, interaction is often called
effect modification.

Interactions are different from confounding; with in-
teractions, the relationship between the risk factor and the
outcome is not due to a third variable; rather, the relation-
ship varies depending on the value of the third variable.
For example, a randomized, controlled trial (24) showed
that the drug alendronate decreased the risk for fractures
among patients with osteoporosis (relative hazard, 0.64
[CI, 0.50 to 0.82]) but not among those with a higher
baseline bone mineral density (relative hazard, 1.08 [CI,
0.87 to 1.35]). The interaction was demonstrated statisti-
cally by entering a variable for treatment group, a variable
for bone mineral density, and a product term consisting of
treatment group multiplied by the bone mineral density
into a proportional hazards analysis. The product term was
statistically associated with outcome (P � 0.01), reflecting
the fact that the effect of alendronate varied by baseline
bone mineral density.

Although the search for interactions can be clinically
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meaningful, as was the case in this study, readers should be
skeptical of interaction terms especially if, unlike in this
study, the researchers did not specify the hypothesis a pri-
ori. The reason is that when investigators search for inter-
actions, they are essentially performing subgroup analyses.
The more interactions searched for, the more subgroups
tested, and the greater the possibility that the relationship
between the dependent variable and the outcome will dif-
fer because of chance in one or more of the different sub-
groups.

HOW WELL DOES THE MODEL PREDICT OUTCOME?
To assess the power of a linear regression model to

predict outcome, most investigators report the adjusted R2.
The value of R2 ranges from 0 to 1; multiplied by 100, R2

can be thought of as the percentage of the variance in the
outcome accounted for by the independent variables. Be-
cause R2 increases in value as additional variables are in-
cluded in the model, adjusted R2 charges a penalty for
every additional variable included. In a model with an R2

close to 1, the dependent variables together accurately pre-
dict outcome.

For logistic regression models, investigators often use
the Hosmer–Lemeshow goodness-of-fit test (25). This sta-
tistic compares the estimated-to-observed likelihood of
outcome for groups of persons. In a well-fitting model, the
estimated likelihood will be similar to the observed likeli-
hood. Readers should be aware that the Hosmer–Leme-
show goodness-of-fit test and other available goodness-of-
fit tests (26) have substantial limitations.

Goodness-of-fit tests are rarely reported with propor-
tional hazards regression. Instead, some investigators com-
pare estimated-to-observed time to outcome in tabular
form (27). In a well-fitting model, the estimated and ob-
served times to outcome for different groups of persons
will be similar.

Although goodness-of-fit statistics are an adequate
measure of how well an explanatory model accounts for the
outcome, predictive models require a more quantitative
measure of their ability to predict outcome. This is com-
monly done with a logistic regression model by computing
the sensitivity, specificity, and accuracy of a model’s pre-
dictions at a particular cut-point (for example, assuming
that all persons with a predicted probability of ischemia of
�15% actually have ischemia). The area under the receiver-
operating characteristic (ROC) curves allows assessment of
the predictive value of a logistic regression model over var-
ious cut-offs of probability of outcome (28, 29).

IS THE MODEL RELIABLE?
Readers should note whether the investigator has

shown that a multivariable model is reliable before accept-
ing it at face value. The reliability of a model depends on
its purpose. If the model is explanatory, reliability means
that a different set of data would probably yield a model

with the same variables and similar coefficients. A reliable
predictive model predicts outcomes equally well for set-
tings or for data other than those for which it was devel-
oped.

An important threat to reliability is insufficient sample
size. As a rule of thumb, to have confidence in the results,
there should be at least 20 persons for each independent
variable eligible to be included in a linear regression model
and at least 10 outcomes for each independent variable
eligible to be included in a logistic regression or propor-
tional hazards model (30–32). Sample size requirements
for logistic regression and proportional hazards regression
are expressed as outcomes per variable (rather than persons
per variable). The required sample size is based on the less
frequent state of the dichotomous outcome. If only 6 per-
sons in a study develop cancer, the model will have diffi-
culty predicting how three variables independently predict
cancer development, even if 994 persons did not develop
cancer.

Wide CIs are the result of insufficient sample size. For
example, a logistic regression analysis was used to assess the
association between cigarette smoking during adolescence
and development of a panic disorder in early adulthood
(33). The investigators adjusted for eight potential con-
founders and found that smoking during adolescence was
strongly associated with development of a panic disorder in
young adulthood (odds ratio, 15.6). However, 95% CIs
for the odds ratio varied greatly from 2.31 to 105.14. Al-
though the sample size was large (n � 688), a panic disor-
der developed in only 7 persons.

One other caution about sample size is as follows:
Even if a study has a large enough number of events per
independent variable, the estimates of the association be-
tween a risk factor and an outcome may still be inaccurate
if the risk factor is rare. For example, if only 10 of 800
persons in a study are injection drug users, the model can-
not accurately estimate the relationship between being an
injection drug user and the outcome.

In addition, a sufficient sample size is no guarantee
that results from a model can be reproduced with new
data. Although some decrement in performance is accept-
able when a model is rerun with new data, a reliable model
will perform well with new data. Unfortunately, investiga-
tors cannot always collect additional data. In these situa-
tions, investigators may report one of three alternative
methods for assessing the reliability of a model: split-group,
jackknife, or bootstrap (1). With split-group validation, in-
vestigators divide the data set into two parts; the model is
developed on the first data set and then validated on the
second data set. With a jackknife procedure, the investiga-
tors sequentially delete persons from a data set and repeat-
edly recomputes the model with each person missing once.
With a bootstrap procedure, the investigators take random
samples of persons from a data set with replacement of the
previously selected persons so that they are eligible to be
resampled. The result is that a person may be chosen more
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than once. Although none of these methods can be consid-
ered definitive, if they closely approximate the original
model, readers can have greater confidence in the results.

Even if a prediction model is reliable, it may not be
useful in clinical practice for several reasons (18, 19). It
may require clinicians to have certain laboratory results
that may not be available, or it may have been developed
and validated on patients different from those seen in clin-
ical practice. For example, if an analysis included only men
between 20 and 60 years of age, we would not assume that
the results would be applicable to a 70-year-old woman.
Similarly, if less than 5% of the sample was younger than
30 years of age, the model’s predictions for 22-year-old
men may not be very robust. These principles can be seen
clearly by translating the results of a multivariable model
into tabular form; this allows readers to see the probabili-
ties and CIs of outcome for different groups of persons (18).

CONCLUSION

By understanding the concepts that underlie multi-
variable analysis, clinical readers can better evaluate the
goals and results of published studies.
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