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Advice on Statistical Analysis for Circulation Research
Hideo Kusuoka, Julien I.E. Hoffman

Abstract—Since the late 1970s when many journals published articles warning about the misuse of statistical methods in
the analysis of data, researchers have become more careful about statistical analysis, but errors including low statistical
power and inadequate analysis of repeated-measurement studies are still prevalent. In this review, several statistical
methods are introduced that are not always familiar to basic and clinical cardiologists but may be useful for revealing
the correct answer from the data. The aim of this review is not only to draw the attention of investigators to these tests
but also to stress the conditions in which they are applicable. These methods are now generally available in statistical
program packages. Researchers need not know how to calculate the statistics from the data but are required to select the
correct method from the menu and interpret the statistical results accurately. With the choice of appropriate statistical
programs, the issue is no longer how to do the test but when to do it. (Circ Res. 2002;91:662-671.)

Key Words: power analysis � repeated measures � analysis of covariance
� multivariate analysis of variance � nonparametric tests

In the late 1970s and the early 1980s, many journals
including Circulation Research published articles warning

about the misuse of statistical methods in the analysis of
data.1–7 Among the main errors identified were incorrect use
of multiple comparisons of several independent groups, low
statistical power, and inadequate analysis of repeated-
measurement studies. The problem in the multiple compari-
sons of means from more than two populations has been well
recognized since then, and now it is rare that misuse of
repeated t tests is published in peer-reviewed journals. Al-
though we still see manuscripts containing this problem,
reviewers often prevent these articles with multiple t tests
from being accepted and advise reanalysis to the authors. In
place of the previous error, however, there is a tendency to
overuse the Bonferroni correction for multiplicity. In con-
trast, the problem about repeated measurements on the same
experimental units has not been completely resolved; inaccu-
rate analysis is still frequent. Finally, inadequate power
analysis often leads to incorrect acceptance of the null
hypothesis of no difference between the groups. The prob-
lems may be partly perpetuated by the vagaries of statistical
program packages; analysis of variance (ANOVA) with
multiple-comparison tests is contained in almost all program
packages for statistics, whereas the program for the analysis
of repeated measures is not contained in usual packages for
biomedical statistics, and power analysis is not included as
often as it should be. Furthermore, although it is not difficult
to analyze data with ANOVA (even by hand calculation), this
is not so for repeated measures. In the early 1980s, the
availability of computers was limited whereas electrical

calculators became popular, but these were not well adapted
to repeated-measures analysis.

In this review, several statistical methods are introduced
that are useful to test various hypotheses but are not well
recognized or sufficiently utilized. These methods are now
easily available in some extended statistical program pack-
ages such as SPSS for the PC.8 The questions indicated below
are the target examples of this review. The aim of this review
is not only to draw the attention of investigators to these tests
but also to stress the conditions in which they are applicable.
With the choice of appropriate statistical programs, the issue
is no longer how to do the test but when to do it.

In this review, we will discuss the following topics:

1. What questions does the investigator need to ask about the
distribution of the variables?

2. What do significance and probability value mean?
3. Type I and type II errors: how many measurements are

needed? (power analysis)
4. What are our concerns about multiple comparisons?
5. Repeated measures: when and how should such analysis

be used?
6. Is there a difference between two or more regression lines?

(analysis of covariance)
7. How does one compare saturating functions, eg, Ca2�-

sensitivity curves of myofilaments, under multiple condi-
tions? (MANOVA)

8. How is it appropriate to compare survival curves under
different conditions? (actuarial life-table analysis and
Kaplan-Meier analysis)

9. What are the factors that determine survival curves? (Cox
regression model)
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10. How does one test hypotheses in which the parameters
show distributions far from the normal distribution?
(nonparametric tests)

11. Is there a correlation between two parameters expressed
by ordered category? (measures of correlation for R�C
tables)

12. Do two indices evaluate the data similarly? (� measure of
agreement)

13. How much does a drug reduce a risk? (odds ratio and
McNemar’s test)

14. How does one predict risk in a patient? (logistic
regression)

Basic Concepts in Statistics
Statistics has been defined as the art and science of dealing
with the variability of measurements. Without variability,
there would be no need for statistical analysis. If all people
with essential hypertension had resting blood pressures of
150/100 mm Hg, then diagnosis would be easy. Furthermore,
it would be simple to determine if a new agent lowered
resting blood pressure. Give it to a few patients, and if the
resting systolic blood pressure is measurably lower, we have
established that the agent works. Unfortunately, in real life,
there is variability, which is sometimes considerable. Even in
a single patient, daily resting blood pressures vary, so that if
the resting blood pressure was 150 mm Hg one day and
140 mm Hg on the next day after a drug had been given, we
could not be sure that the decrease was due to the drug rather
than to natural variability. In most statistical analyses, there-
fore, we need to compare a difference that might have been
induced by a treatment or stimulus to some measure of
variability: test statistic�difference/variability. The bigger
the difference is relative to the variability, the more likely it
is that the treatment caused the change. The differences we
find depend on the problems being studied, but it is often
possible to do things that reduce variability. Often the
difference between an efficient and an inefficient statistical
test depends on how we handle variability.

The numbers that we analyze statistically are conveniently
classified into three groups (scales) that require different
statistical tests.

Ratio scale: The ratio scale gives numerical data. Ratio
numbers are the usual numbers that we deal with, where 4
is twice 2, and the interval from 2 to 4 is the same as the
interval from 4 to 6. Ratio numbers are the subject of most
parametric statistical tests like t tests, analysis of variance,
and regression.

Ordinal scale: The ordinal scale gives qualitative but ordered
data. Ordinal numbers are like �, ��, ���, ����, or
what seem to be ratio numbers but really stand for ordered
categories; for example, grading symptom severity as 1
through 5. Grade 4 is not twice as severe as grade 2, and
�� is not twice �. Furthermore, the interval from grade 2
to 3 is not the same as the interval from grade 3 to 4. These
numbers are analyzed by nonparametric tests such as
Spearman’s correlation coefficient or the Kolmogorov-
Smirnov tests.

Nominal scale: The nominal scale gives categorical data.
Counts in the categories (number alive versus dead or over
and under some critical concentration) require analysis by
Poisson or binomial statistics or �2 tests.

1. Distributions
Because t tests are the most commonly used tests, they will be
used to illustrate some important issues. Like all statistical
tests, they are based on a mathematical model. Like many
parametric tests, the model requires the underlying distribu-
tions tested to be normal Gaussians. The t test is fairly robust,
that is, it can tolerate some departure from normality without
losing much efficiency, but large departures can be devastat-
ing. (Robustness means that the statistics work well for a
wide variety of population types of the samples.) Easy ways
of testing normality are to inspect the distribution after
plotting a stem-and-leaf diagram,9,10 noting that the standard
deviation is about the same size as the mean (indicating
severe rightward skewing), calculating skewness and kurto-
sis, or performing a Shapiro and Wilks test or the D’Agostino
and Pearson test.11,12 If the distributions are grossly abnormal,
then either they need to be normalized by some transforma-
tion (square root, logarithmic, and reciprocal are the most
frequently used10) or else one of the nonparametric tests
needs to be used.

2. Significance of the Probability Value
Most investigators pay great attention to the probability value
without really thinking what it is telling them. The probability
value is the probability of a type I error, that is, the probability
that the null hypothesis is true. If we have two groups, for
example, a control and an experimental group, and the two
means are different, the null hypothesis states that the
treatment has not changed anything, and the observed differ-
ences could have come about by chance in drawing two
groups from the same population. If this probability is high,
we would not want to assert that the treatment has changed
the outcome. If the probability is low, we might want to assert
that the treatment has changed the outcome. Conventionally,
this probability is set at �0.05 (also known as the type I or �
error), but this is arbitrary. The great statistician Ronald
Fisher originally suggested this probability because he re-
garded a 1 in 20 chance as being rare. Obviously, a 1 in 100
chance is even rarer, but he probably knew from experience
that this would impose a standard that could seldom be met.
However, the critical value of �0.05 is not an absolute
requirement but merely a recommendation that will serve the
purpose most of the time. For example, if by rejecting the null
hypothesis we plan to start a new project that will cost
millions of dollars and take years to complete, we might
require a probability �0.01. If, on the other hand, we are
screening for possible useful new treatments, a probability of
�0.10 might be selected; after all, a 9:1 chance of being right
is good odds. A statement like this is often seen in an article:
“The treatment changed the flow from 5 mL · g�1 · min�1 to
3 mL · g�1 · min�1 (P�0.07), which is not significant, so that
the treatment had no effect.” This cannot be right. Flow
decreased considerably, but we are not quite as confident in
rejecting the null hypothesis as if P�0.04. Nevertheless, it
would be inefficient to discard the possibility that the treat-
ment had caused flow to decrease; at the very least, we might
want to do more experiments.

The other important aspect of the probability value is the
term “significance.” In statistics, this has the specific mean-
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ing of rejecting the null hypothesis at a given probability. It
has nothing to do with the meaning of significance in
ordinary language, where it implies important or noteworthy.
If, for example, we do a clinical trial with two antihyperten-
sive drugs and recruit 100 000 people to take each drug, it
might turn out that drug A lowered blood pressure by
1 mm Hg more than drug B, and that this difference was
statistically significant. This small difference would almost
certainly be of no clinical or physiological importance. One
way of emphasizing these absolute quantities is to give the
probability value and to calculate the confidence limits for the
difference obtained.13

Most statistical tests involve examining a difference be-
tween two or more groups and then comparing that difference
to some measure of variability. The most efficient way to
evaluate such a test is to look at the difference in absolute
units and decide if it is physiologically or clinically impor-
tant. If it is too small to be of interest, then whether it is
statistically significant or not is of no particular value. If the
difference is large enough to be meaningful, then it needs to
be related to the measure of variability. If the ratio is large, it
implies that the difference may be statistically significant,
that is, that the null hypothesis can be rejected. If the ratio is
small, then we have to ask ourselves why. The measure of
variability can be inflated because the distributions are not
normal or do not have similar standard deviations, and if that
is the reason, then either the data must be transformed to fit
the requirements of the test or else a nonparametric or
distribution-free test must be used. On the other hand, the
measure of variability may be perfectly adequate, but the
sample size may be too small. This leads to the important
concept of statistical power (see below).

Reviewers often make an irritating minor error. The t test
yields a significant result, but the reviewer comments that
because the distribution is grossly abnormal, a t test should
not be done. If the distribution is very abnormal, that may
cause a real difference to be regarded as not significant
because the variability will have been inflated by the skewed
distribution. On the other hand, if despite the abnormal
distribution the t test comes out to be significant, that is never
a false result. Had the distribution been normalized, then the
t test would have been even more significant, but that is not
usually required once significance has been demonstrated.

3. Type I and Type II Errors and
Power Analysis

Statistical power is the probability of getting a statistically
significant result if there is a biologically real effect in the
population being studied. The type I error mentioned above is
the probability of rejecting the null hypothesis falsely. Its
counterpart is the type II error (termed �), the probability of
accepting the null hypothesis falsely, that is, of rejecting the
fact that there is a difference between the two groups. The
power of a test is calculated as 1-�, a measure of the ability
to detect a real difference if it is there. If the sample size is too
small, then it may not be possible to establish the significance
of a given difference, but that does not mean that the
difference is not there. Power analysis allows us to be certain
that we have looked hard enough for the difference. Most

measures of variability use some form of standard error,
which for a simple t test is the standard deviation divided by
the square root of n, the number in the sample. As the sample
size increases, the standard deviation hovers about its true
value, but the standard error decreases progressively.

One of the first studies to draw attention to this problem in
medicine was that by Freiman et al,14 who examined 71
randomized trials that compared the effects of two drugs or
treatments and concluded that there was no statistically
significant difference between their effects. They showed
that, in many of those studies, the actual responses were quite
large, but because the sample sizes were too small there was
a greater than 10% chance of missing a true 25% therapeutic
improvement in 67 of the trials and a true 50% therapeutic
improvement in 50 trials. In some instances, this led the
investigators to discontinue studying the new treatment and to
conclude that it was of no benefit. Clearly this is an
undesirable outcome; a 25% improvement in the cure rate in
any disease would be very welcome.

Unfortunately, this important article was largely ignored,
as documented by inadequate power found in many medical
studies by Reed and Slaichert15 and more recently in many
articles published in the American Journal of Physiology as
reviewed by Williams et al.7 The error is pervasive. We
recommend that investigators take this issue seriously. It is
both inefficient and probably also unethical for investigators,
clinical or other, to plan and execute an experiment that
cannot answer the question.

There is a vast literature on this subject, and much of it is
accessible to the average investigator. The concepts and the
necessary tables are readily available in several standard
books16–18 and discussed in many articles. There are also
several statistical programs for power analysis that are either
free or for purchase that have been evaluated by Thomas and
Krebs,19 and most of these can be found on an excellent Web
site Web Resources on Power Analysis.20 The calculations are
best done a priori, that is, in planning the study and before
starting it, but they can also be done post hoc in determining
the power of a study that has been completed. The principle
of the a priori calculation is simple and will be illustrated for
the unpaired t test. The first thing is to decide what a
meaningful difference between the two groups would be. Is it
a 25% reduction in mortality? Is it a 40% reduction in
interleukin-6 concentration? A 20 mm Hg decrease in dia-
stolic blood pressure? Then an estimate of the variability of
the data, as typified by the standard deviation, is needed. This
is usually available from similar studies in that field but
occasionally may have to be obtained from a pilot study. The
ratio of the absolute difference to the standard deviation is
symbolized by d or �, often known as the effect size. Next, set
the values for � and �. The type I error � is conventionally set
at 0.05, but if this results in unattainable numbers, a value of
0.10 could readily be used. The type II error � is optimally
0.05 (power 0.95), but once again if this leads to unacceptable
high numbers, then � could be increased to as high as 0.20
(power 0.80). With these values for �, �, and d, either the
tables in the books can be used, or the values can be entered
into one of the computer programs (self-standing or online) to
determine what number n is needed for each group. The post

664 Circulation Research October 18, 2002

 at NORTHWESTERN UNIV on July 10, 2011http://circres.ahajournals.org/Downloaded from 

http://circres.ahajournals.org/


hoc calculation is used to find out the power of a completed
study. It is done in the same way, except that d and n are
known, and � is usually 0.05. If the power of the test turns out
to be low (eg, 0.4), then there is no way to tell if the two
groups are or are not different.

4. Some Concerns About
Multiple Comparisons

Glantz1 identified these as among the most frequent errors of
statistical analysis. Wallenstein et al6 dealt very effectively
with the problem, but it appears to us that the pendulum has
swung too far in the other direction, that is, that correction for
multiplicity is sometimes used when it is not needed. People
have a great deal of difficulty in deciding when corrections
for multiplicity are needed, and there are even times when
statisticians disagree.21 Nevertheless, the general principles
are straightforward. In addition, we would like to describe
some other analyses that can be used in certain circumstances
when the issues of multiple comparisons arise.

Let us illustrate that repeated t tests shift the probability
from a single test. For a simple example, consider that you are
trying to decide whether to go home early or stay and work
for another 2 hours. To make the decision you will toss a coin.
If it lands with heads up, you will go home early; if not, you
will stay and work. You toss the coin, and it comes up tails.
You toss it again, and again it comes up tails. You continue
tossing until it comes up heads, so you pack up and go home
early. Obviously, at the first toss, there is a 50:50 chance of
heads coming up, but as you continue tossing, there will
eventually be near certainty that a head will appear; the
chances of getting 10 tails in a row are 0.0009765625.

For a more detailed discussion, we can do no better than
use an explanation given by Tukey.22 Draw two groups at
random from a population with a normal distribution. Set the
probability of falsely rejecting the null hypothesis (which we
know to be true) at 0.05. Therefore, the probability of
correctly accepting the null hypothesis is 1�0.05�0.95. Now
draw two more groups at random from the same population,
and once again there is a probability of 0.05 of falsely
rejecting the null hypothesis and 0.95 of correctly accepting
the null hypothesis. Now what happens if we state that we
will reject the null hypothesis if either of the two sets shows
a significant difference? The probability of correctly accept-

ing the null hypothesis for both sets is the product of the two
probabilities: 0.95�0.95�0.9025. Therefore, the probability
of falsely rejecting the null hypothesis is 1�0.9025�0.0975.
In other words, by giving ourselves two chances to reject the
null hypothesis, we have almost doubled the chances of
falsely rejecting it. If we continue to draw pairs of groups at
random from the parent population, the risk of falsely
rejecting the null hypothesis increases steadily, as shown in
Table 1.

This table shows that, as the number of t tests increases, the
risk of a type I error increases, even though for each
individual t test the risk remains at 0.05. One of the ways of
reducing the type I error is to divide the probability of making
a type I error by the number of comparisons (t tests). As
shown in the last column, this ratio remains close to the
conventional 0.05 value. This is the basis of the Bonferroni
correction.

The issue to be determined is when to apply this correction.
It is essential to realize that there are two different ways of
comparing data, and this can be exemplified by the study of
Creasy et al.23 They produced growth retardation in fetal
lambs by embolizing the placenta with 15-�m-diameter
microspheres and then compared control and growth-retarded
lambs for weights of 9 different organs as well as for arterial
oxygen and carbon dioxide tensions. In all, there were 11
comparisons. We now introduce the conventional definitions
of two error rates, the comparison-wise error rate and the
family-wise (or experiment-wise) error rate21:

Comparison-wise error rate�number of comparisons leading
to rejection of the null hypothesis/total number of
comparisons

Family-wise error rate�number of families leading to rejec-
tion of the null hypothesis/total number of families

The comparison-wise error rate is the familiar type I error.
Each organ weight, for example, can be validly compared by
t test without any need for correction, and the conventional
0.05 value can be used (Figure 1).

On the other hand, if the unit of comparison is the whole
family of comparisons, and if any of the 11 separate compar-
isons leads to the conclusion that placental embolization
affects the fetus, then we need protection against the inflated

TABLE 1. Multiple Comparisons

Number of
Pairs (N)

Probability of Correctly
Rejecting the Null Hypothesis

Probability of Falsely Accepting
the Null Hypothesis (I) Ratio I/N

1 1–0.05�0.95 0.05 0.050

2 0.952�0.9025 1–0.9025�0.0975 0.049

3 0.953�0.8574 1–0.8574�0.1426 0.047

4 0.954�0.8145 1–0.8145�0.1855 0.046

5 0.955�0.7738 1–0.7738�0.2262 0.045

6 0.956�0.7351 1–0.7351�0.2649 0.044

7 0.957�0.6983 1–0.6983�0.3017 0.043

8 0.958�0.6634 1–0.6634�0.3366 0.042

9 0.959�0.6302 1–0.6302�0.3698 0.041

10 0.9510�0.5987 1–0.5987�0.4013 0.040
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error due to multiplicity. Failure to distinguish these two
types of errors leads many investigators to use the Bonferroni
(or other) correction when it is the comparison-wise error rate
that is needed. By applying the Bonferroni correction unnec-
essarily, the value of � for the type I error is made so small
as to be difficult to attain. In Figure 1, in which the data for
6 organs are shown, three of the organs show significant
differences with a simple t test, but if the Bonferroni
correction has been made, only one of those would have
shown a significant difference. If, however, 50 separate
comparisons had been made, then the Bonferroni correction
would have required P�0.05/50�0.001, and probably no
single comparison would have been significant. For the group
as a whole, an analysis of variance correctly identifies a
difference due to embolization, with P�0.028.

There is another way in which multiple time or dose
comparisons can be made without involving the Bonferroni
adjustment. Consider an experiment in which interleukin-6
(IL-6) is measured every 30 minutes for 3 hours in control
animals and in treated animals to which a potential agonist
has been given. Excluding the control values at time zero,
there are 6 time points and 6 possible comparisons. It could
easily happen that, if the number of animals is small and the
differences due to the agonist are small, no significant
differences can be established at any time point, yet it is clear
from the figure that the agonist consistently increased IL-6
concentrations (Figure 2).

Figure 2 shows control concentrations (curve A) and two
sets of agonist-stimulated concentrations (curves B and C).

Curve C shows data in which each time point after time zero
has high concentrations. If the concern is to show that curve
C is different from the control A, one could either do an
analysis of variance or else just examine the area under the
whole curve. If this area is calculated for each subject, then it
can be compared with the null hypothesis (ie, that there is no
change) by a simple t test. By inspection, curve C is clearly
different from curve A, but curve B with lower concentrations
might not be shown to be significantly different without
testing. If, in comparing curves A and B, we did multiple t
tests and used a Bonferroni correction, it is possible that none
of the differences at the different time periods might be
significant, yet the curve as a whole would show a significant
difference.

There is one other format that needs discussion. Consider
Figure 3A, where the experimental group has an approxi-
mately linear increase with time.

The way to handle this depends on what question is being
asked. If the question is “Has the agonist changed the
concentrations?,” then the most efficient way to test signifi-
cance is to fit a straight line to each curve by linear regression
and then compare the slopes by analysis of covariance. If the
control slope is zero, it might be sufficient to show that the
experimental line has a slope that is significantly different
from zero. This method of testing is much more sensitive than
doing an analysis of variance, because by using knowledge of
the relation between the x and y variates, the residual
variability is greatly reduced. There is, however, another
question, namely: “When does the first increase in concen-
tration occur?” There is a simple answer to this but also a
caveat. The simple answer is to do t tests at each time point,
and the first one that is significant indicates a significant
departure from control. However, this answer applies only to
the data under consideration and cannot be generally applied.
If, for example, we think of a chemical reaction in which the
product increases linearly with time (Figure 3B), that increase
may start as soon as the chemicals are mixed. The fact that an

Figure 1. Weights of 6 organs (Creasy et al23). Short vertical
lines are standard deviations. *P�0.05; **P�0.01. P(b) indicates
critical value with Bonferroni correction.

Figure 2. Measurement of IL-6 under different conditions. The
short vertical lines are standard errors.

Figure 3. Example in which the concentrations linearly increase
with time. The short vertical lines in panel A are standard errors.
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early time point cannot be shown to be different from control
might merely mean that the numbers of experiments are too
small to show a significant difference because the power of
the test to show a small difference at that time is low. If we
believe that it is important to show that the reaction begins,
for example, 30 seconds after the chemicals are mixed, then
we need to design an experiment with sufficient power to
determine a small difference.

5. Repeated-Measures Analysis of Variance
Wallenstein et al6 discussed how to handle this type of
analysis in detail, but we would like to emphasize the reasons
for these more complex procedures. Consider an experiment
that takes two groups of subjects (people or animals), mea-
sures baseline concentrations of IL-6, and then measures IL-6
concentrations again after giving either intravenous saline or
else an equivalent volume of a putative inhibitor of IL-6
production. The hypothesis is that the inhibitor will decrease
the concentration of IL-6. This experiment can be done in two
ways. In one, each subject provides one pair of measure-
ments, and we do an unpaired t test to determine if the
differences in the control and treated groups are the same or
not. The other way would be to use several subjects in each
group but to give each subject increasing doses of the putative
inhibitor. This method has the advantages of getting more
measurements out of a given number of subjects and of
allowing determination of a dose-response relationship. It has
the disadvantage of blurring the distinction between the
groups, because the variability from one subject to the next
might be great enough to conceal differences between the
groups. Repeated measurements are usually made at sequen-
tial times or doses. Whenever multiple measurements are
made on the same subject (patient or animal) or object (eg,
cell culture, blood sample, or vascular ring), special proce-
dures to deal with repeated-measures analysis are needed.24

As a specific example, an experiment is done to test the
accuracy of a skin electrode for measuring arterial oxygen
tension (PaO2) in subjects with and without tissue edema.
With an arterial needle or catheter in place, a number of
simultaneous measurements are made of arterial tension in
blood (PaO2) and via the skin electrode (tcPaO2) in each of
several healthy subjects and patients with tissue edema over
as wide a range of arterial oxygen tensions as possible. When
the results are displayed as an x-y plot, the relationship within
each group is linear, with a similar slope in each patient but
with slight differences in the intercepts. An idealized result is
given in Figure 4A for the healthy group.

How should this experiment be analyzed, other than to
report each individual relationship? One thing that should not
be done is to pool all the points for the healthy subjects into
one group, the points for the edematous subjects in another
group, and then make a simple comparison. If that is done,
two errors are likely to occur. One is that the slope of each x-y
relationship is likely to be incorrect, as shown in Figure 4B.
In fact, Glantz and Slinker25 gave a striking example in which
each of three subjects had no relation between x and y
(horizontal line on the graph), but pooling the data led to the
creation of a significant slope. The second error is that the
estimate of variability is likely to be greatly increased

because the intrinsic variability of the points about each line
will be added to the variability of the lines from each other.
If we pool the data for the group with edema, we would then
compare two sets of data with incorrect slopes and exagger-
ated variability. Even if the slopes were not misleading, the
increased variability would make it more difficult to show
differences between the two groups.

The way to do the analysis is to partition the total
variability into the differences between the two groups—
between the subjects within each group, that is, the differ-
ences in the y values (here tcPaO2) due to differences in the x
value (here PaO2), and the residual differences. The compo-
nent of variability due to difference between subjects is
combined with the residual variability in Figure 4B, but with
special techniques it can be removed, so that the residual
variability is reduced to the average of the three individual
sets shown in Figure 4A.

To give a more detailed example, a pulse rate was
measured every 10 minutes for 4 times in patients with or
without a drug. The data are arranged with four variables, so
that four pulse rates are recorded for each patient. A factor
that encompasses each set of repeated measurements is
defined as a within-subjects one. In this example, time is
defined as a within-subjects factor, and drug is specified as a
between-subjects factor because it divides the groups of
subjects into two. The hypotheses about the effects of both
the between-subjects factors and the within-subjects factors
can be tested by repeated-measures analysis. The interactions
between factors can be checked as well as the effects of
individual factors.

Measurements of more than one variable for the different
levels of the within-subjects factors can be analyzed by a
doubly multivariate repeated-measures analysis. The exten-
sion of the above example, that is, the measurement of pulse
and respiration at 4 different times on each subject, is an
example of doubly multivariate repeated measures.

Figure 4. Principle of repeated-measures analysis. Left, Hypo-
thetical relation between PaO2 (x-axis) and tcPO2 (y-axis) for 3
subjects a, b, and c in the same group; all three slopes are the
same, but the intercepts are different. Right, Three sets of
points pooled (p) into a single group, which has a slope that dif-
fers from the individual slopes and also has a greater standard
deviation from regression than each individual data set has.
Repeated-measures analysis avoids these sources of error.
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6. Analysis of Covariance (ANCOVA)
This is the test to determine whether two or more regression
lines obtained from the data are identical or not. The analysis
of covariance has the combined features of analysis of
variance (ANOVA) and regression. In ANOVA, the typical
model for the value of the observation consists of the
population means of different classes and the residual. In
contrast, the model in ANCOVA consists of one more
variable that is linearly related to the observed value. That is,
a given value is a sum of the population mean, the contribu-
tion of regression, and the residual.

ANCOVA is useful to study regressions in multiple clas-
sifications. For example, the relation between variables x and
y in the groups with or without a treatment is investigated,
and the relation is supposed to be linear. To test the
hypothesis whether the treatment shifts the regression line
between x and y, ANCOVA should be used. Investigators
should be aware that ANCOVA produces two results. First, it
tests to find out if the two slopes are significantly different. If
they are not, then an average slope is calculated and the test
determines if one line lies significantly higher or lower than
another. (There can be more than two groups.) Thus, in
Figure 4, the three linear regressions in the left panel can be
compared and, if the slopes are not significantly different,
they can be combined into a single average slope for that
group. If the question is of interest, the positions of the
different slopes can be compared. If the two slopes are
significantly different, then it may not make sense to ask if
one line lies above another because of the dependence of
height on the value of the x variate (Figure 5).

Another application of ANCOVA is adjusting bias in
studies. For example, in a study in which the responses of
some drugs are measured in rats, if it is known that the
response is related to the body weight, the differences in the
responses may not be due to the drug effects but to the
different weights among the groups. Thus, it is necessary to
correct the bias that comes from weight. When the relation of
the response and the weight can be assumed to be linear,
ANCOVA is applicable.

7. Multivariate Analysis of Variance
(MANOVA)

It is important to differentiate the behaviors of the heart under
different conditions. Usually, the behavior is characterized by
its calcium responsiveness. Measurements of calcium respon-

siveness in hearts, muscles, or myocytes under different
conditions produce sigmoid, saturating data for contractile
activation. However, the proper statistical technique to detect
the difference in calcium responsiveness is not well estab-
lished. It is not difficult to test for changes in the maximal
responses, but it is not easy to test the sensitivity (ie, the
steepness and the midpoint of the curves). The statistical test
of EC50, that is, the calcium concentration that gives the 50%
of maximum response, is often used, but the results depend
greatly on how to calculate EC50 and also on the maximum
value.

When the external calcium concentration is fixed,
MANOVA is applicable. MANOVA considers the effects of
factors on several dependent variables at once, using a
general linear model. The factors divide the cases into groups.
The hypotheses tested are similar to those in univariate
analysis (ANOVA), except that in multivariate analysis, a
vector of means replaces the individual means. For example,
the developed pressure was measured at 5 different calcium
concentrations of the perfusate in the control and stunned
myocardium (see Figure 5 in Kusuoka et al26). The data in
each heart were expressed as a vector whose elements were
the developed pressure at each calcium concentration.
MANOVA indicated a statistically significant difference in
calcium responsiveness between the control and the stunned
heart.

In some experiments, it is not possible to control the
calcium concentration, or different sets of calcium concen-
trations are used among the groups. MANOVA is then not
applicable. As an alternative method, the relation is fitted by
some equation, and MANOVA is applied to the set of the
parameters that characterizes the equation. For example, the
relation between calcium concentration ([Ca2�]) and tension
(T) can be fitted with Hill’s equation, for example:
T�K[Ca2�]n/(1�K[Ca2�]n). Then this relation is changed into
a linear form: log{T/(1�T)}�logK�nlog[Ca2�].

In this example, ANCOVA may be used to test the
difference among the linear regression forms of Hill’s equa-
tion. MANOVA can also be used to test the set of Hill’s
constants (K) and Hill’s coefficients (n). These methods are
widely applicable to test the dose-response curves under
different conditions.

8. Nonparametric Tests
Most classical statistics have two major assumptions. One is
that the data come from a specific distribution, usually the
normal distribution. Statistics are calculated based on the
distribution parameters such as the mean and variance.
Another assumption is that the groups being analyzed have
equal variances. Although most statistics are robust enough to
withstand minor violations of these assumptions, it may
happen that the data violate these assumptions so substan-
tially that the results may not be reliable.

There are many different types of distributions, and robust
techniques have been developed to handle them. Nonpara-
metric tests can analyze data under unfavorable circum-
stances; they are also known as distribution-free tests because
there is no need for assumptions about the distribution.
Nonparametric tests have another advantage in that they are

Figure 5. Example for ANCOVA. At low values of x, the y values
in group 1 exceed those in group 2, but the reverse is true at
high values of x.
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resistant to gross mistakes in measuring, recording, or copy-
ing data for statistical analysis, because they are little affected
by gross errors in a few observations.

For some tests, both parametric and nonparametric ver-
sions exist. Generally, the parametric one is more sensitive
than the nonparametric one and should be used when the
necessary assumptions are met. However, nonparametric
tests, although being distribution-free, are not assumption-
free. These tests require certain assumptions, but in general
they are satisfied more easily than those required by para-
metric ones. The relation between the parametric and the
nonparametric methods is summarized in Table 2. Typical
nonparametric tests are the Mann-Whitney U test and the
Wilcoxon test that can replace the unpaired and paired t tests,
respectively. There are, however, many other nonparametric
tests to fit almost any contingency.27,28

9. Measures of Correlation for R�C Tables
This is a test to determine whether there is a correlation
between two variables with ordered categories. For example,
the degrees of cell damage in an assay are categorized as
severe, moderate, mild, or none by two different measures
(eg, morphology and contractile activation). The correlation
is evaluated by the Spearman correlation coefficient, the
Pearson correlation, and the linear-by-linear association �2.29

For the Spearman correlation coefficient, the rank order of
each value is used to compute the Pearson correlation. The
linear-by-linear association �2 is simply the square of the
usual Pearson correlation multiplied by the sample size minus
1. For the Pearson correlation, it is assumed that the data

come from a normal distribution, and this is not satisfied in
two-way table data. In contrast, the Spearman correlation
requires no assumption about the nature of the population
sampled.

10. Life-Table Analysis and Kaplan-Meier
Method

In some studies, it is necessary to examine the time to
occurrence of a critical event of interest such as survival time
of animals or patients after one of several interventions or no
intervention at all. Subjects can enter a study at various times.
The time is measured from the start of observation, ie, the
time that the subject enters the study, until the event is
observed. (The event need not necessarily be adverse.)
However, these data usually include some subjects for whom
the second event is not observed, for instance, the subjects are
still alive at the end of study or the subjects are lost to
follow-up. These subjects are termed “censored,” and they
make this kind of study inappropriate for the application of
traditional statistical methods.

Life-table analysis is useful for processing this type of data. In
life-table analysis, the period of observation is divided into
smaller time intervals. For each interval, the probability of the
terminal event for each interval is calculated from the subjects
who have been observed at least until that period; the probability
is given by dividing the number of subjects experiencing the
terminal event during the interval by the number of subjects
entering the interval alive. Then, the probabilities estimated from
each interval are used to estimate the overall probability for the
event to occur at different time points.30,31 There are two similar
ways of constructing these tables.32,33 Thus, when survival times
have been categorized into time intervals such as days, months,
or years, only actuarial life-table analysis is applicable. If exact
times of the events are known, more precise estimates are
available by the Kaplan-Meier method. The probability of a
terminal event is calculated at every occurrence of the event.
This makes Kaplan-Meier techniques useful for studies with few
subjects where the survival intervals are variable. The excellent
review articles by Peto et al34,35 give more details about this
technique.

11. Cox Regression Analysis
Cox regression, like life-table analysis and Kaplan-Meier
survival analysis, is a method for modeling time-to-event data
in the presence of censored subjects. However, Cox regres-
sion is different from others because this method allows the
inclusion of predictor variables (covariates) in the models.
For example, a Cox regression model with cigarette usage
and gender as covariates is constructed to test the hypothesis
regarding the effects of gender and cigarette usage on
time-to-onset for lung cancer. Cox regression can handle the
censored subjects correctly, and it provides estimated coeffi-
cients for each of the covariates. The impact of multiple
covariates can then be assessed in the same model. More
generally, Cox regression can allow for differences in the
baseline characteristics of the groups that are being com-
pared, whether in a randomized or a nonrandomized trial.

The Cox proportional hazards regressions model is popular
in part because it requires fewer assumptions than some other

TABLE 2. Parametric and Nonparametric Statistical Tests
of Hypothesis

I. Tests for 2 independent samples

(1) Categorical data: Fisher’s test, �2 test

(2) Ordered data: Mann-Whitney test, Wilcoxon test

(3) Numerical data: Mann-Whitney test (N), Wilcoxon test (N), Student’s t
test (P)

II. Tests for 2 related samples

(1) Categorical data: Fisher’s test, �2 test

(2) Ordered data: sign test, Wilcoxon’s signed rank test

(3) Numerical data: Wilcoxon’s signed rank test (N), sign test (N), paired t
test (P)

III. Tests for more than 2 independent samples

(1) Categorical data: �2 test

(2) Ordered data: Kruskal-Wallis test

(3) Numerical data: Kruskal-Wallis test (N), one-way ANOVA (P)

IV. Tests for more than 2 related samples

(2) Ordered data: Friedman test

(3) Numerical data: Friedman test (N), one-way repeated-measures
ANOVA (P)

V. Correlation

(2) Ordered data: Spearman correlation coefficient

(3) Numerical data: Spearman correlation coefficient (N), Pearson
correlation coefficient (P)

(N) and (P) in the methods for numerical data indicate nonparametric and
parametric methods, respectively.
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survival models. However, it should be used only if the
assumption of proportional hazards is fulfilled. This means
that the hazards for individuals with different covariates are
constant over time. For example, the differences between the
death rates for two different surgical procedures should be
roughly constant at different times after the procedure. If the
survival curves cross, then this assumption is violated, and an
extended version of the Cox model must be used, perhaps by
dividing the analysis into localized time periods. Another
assumption that needs to be tested is that the covariates have
a multiplicative effect on the hazard rate. For example, if
heavy smokers have a risk of lung cancer three times that of
light smokers and men have a risk that is twice that of
women, then the risk for men who are heavy smokers should
be about 2�3�6 times that of women who are light smokers.
Failure to meet this criterion points out the need for special
techniques.

12. Kappa (�) Measure of Agreement
This is the type of test to determine whether observer A and
observer B similarly evaluate the events of interest. The data
are presented in square tables of dimensions R�R; the
number of rows and columns is the same because each subject
is classified twice.

Kappa is a measure of interrater agreement that assesses if
the counts in the diagonal cells (the subjects who receive the
same rating) differ from those expected by chance. When all
off-diagonal cells are empty, � achieves its maximum value,
1.0. Kappa is judged by using asymptotic standard error to
construct a t statistic to test whether the measure differs from
0. Values of � greater than 0.75 indicate excellent agreement
beyond chance, values from 0.40 to 0.75 indicate fair to good,
and values below 0.40 indicate poor agreement.

Another application of the � measure is the test for
coexistence of two phenomena in the same subjects. For
example, the degrees of systolic and diastolic dysfunction are
classified in 4 categories, and the patients are diagnosed for
systolic and diastolic functions. If systolic and diastolic
functions are always altered in the same manner, � should
indicate excellent agreement.

13. Odds Ratio and McNemar’s Test
There are similarities between the t test and the �2 test. Both
of them, if significance is reached, allow rejection of the null
hypothesis that for the t test is the equality of means and for
the �2 test is the equality of proportions. If the null hypothesis
is rejected, then the magnitude of the difference in the t test
is just the difference between the two means, whereas for the

�2 test it is the odds (cross-product) ratio (Table 3); for both
of these differences confidence limits can be set. One minor
point about the �2 test with a 2�2 table is whether or not to
make a Yates correction, that is, to reduce the absolute
magnitude of the difference between observed and expected
values by 0.5. Most authorities recommend this correction
(which makes the test more conservative), but there are those
who disagree. The issue can be avoided entirely by doing
Fisher’s exact test that, with current computer programs, can
be done with almost any sample size.

Another similarity is that both tests come in unpaired and
paired versions. The usual �2 test is an unpaired test, and its
paired counterpart is the McNemar’s test. In the study
summarized in Table 4, pairs of premature infants with a
patent ductus arteriosus were matched for gestational age and
sex; one of each pair was selected at random to receive
indomethacin and the other to receive a placebo. Then, the
subjects were evaluated for closure of the ductus. The
numbers in the 2�2 table show the outcomes for each pair. In
65 pairs, both infants closed the ductus, and in 40 pairs the
ductus remained open in both members of the pair. These
concordant results give no information about the effect of
treatment. The other two cells show discordance; in 27 pairs,
one member closed the ductus with indomethacin but not
with placebo, and in 13 pairs, one member closed the ductus
with placebo but not indomethacin. The null hypothesis that
indomethacin has no greater effect than placebo would give
20 pairs in each of these discordant cells and is tested by
doing a �2 test on the two discordant cells. Note that to do a
standard �2 test on all 4 cells would be meaningless.

14. Logistic Regression
In the usual linear regression, y�c�bx, we determine the
factors (x1, x2, etc) that explain the variability in y, a
continuous-response variable; for example, height (y) as a
function of age (x) or glucose concentration (y) as a function
of insulin dose (x). Sometimes, however, the response vari-
able y is dichotomous, being either a success or a failure; for
example, survival at 30 days of age for a premature infant
related to birth weight or gestational age. To determine the
probability (p) that an infant of a given birth weight survives
to 30 days, we use logistic regression: ln{p/(1�p)}�c�bx.
Glantz and Slinker25 and Pagano and Gauvreau36 describe the
principles and problems of this technique well.

Conclusions
In summary, we have introduced a number of different
statistical methods that are not always familiar to basic and
clinical cardiologists but may be useful for revealing the
correct answer from the data. These methods are now
generally available in statistical program packages. Research-

TABLE 3. Odds Ratio

Alive Dead Subtotal

A 20 8 28

B 12 12 24

Subtotal 32 20 52

For an example, 52 patients were divided into 2 groups, A and B, by some
factor such as smoking, and the prognosis was evaluated 5 years later. The
odds ratio is (20�12)/(12�8)�2.5. This is interpreted as the odds of being
alive in group A are 2.5 times as great as being alive in group B.

TABLE 4. McNemar’s Test

Indomethacin

Placebo

Closed Open

Closed 65 27

Open 13 40
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ers need not know how to calculate the statistics from the data
but are required to select the correct method from the menu
and interpret the statistical results accurately. We hope that
this review promotes more suitable application of statistical
analysis in Circulation Research.
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