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p < 0.05: Threshold for
Decerebrate Genuflection

The p in p-values is a conven-
ient statistical shorthand for

probability, measured on a con-
tinuum from 0 to 1. In classic
statistical hypothesis testing, p-
values are interpreted under the
null hypothesis of no difference
between the data sets being com-
pared. The value assigned to p is
the probability that, under con-
ditions defined by the null hy-
pothesis, a difference between
the data sets at least as large as
the one observed could have oc-
curred by chance. The smaller
the p-value, the lower the prob-
ability that such a finding rep-
resents a random event and, cor-
respondingly, the stronger the
argument for rejection of the null
hypothesis.1,2

UTILITY OF P-VALUES

p-values diminish the guesswork
entailed in deciding whether ob-
served findings are numerically
stable. For example, if one-year
survival of patients in a clinical
trial randomized to treatment A
(RxA) is 50%, and that of pa-
tients randomized to RxB is 75%,
should we conclude that the two
treatments are associated with
different outcomes? Clearly, the
question can’t be answered with-
out further information. If there
were four patients randomized to
each arm of the trial (N = 8 to-
tal), of whom two receiving RxA,
and three receiving RxB, sur-
vived, we would immediately
recognize that these proportions
could easily have occurred by
chance. From this we would

conclude that the findings are
therefore too numerically unsta-
ble to support any inferences
about real differences between
the two interventions. In con-
trast, if there were 400 patients
randomized to each arm of the
trial (N = 800 total), with the
same 25% absolute difference in
survival, we could confidently
conclude that the findings are
quite stable, and that this ob-
served difference is unlikely to
be a chance event. In neither in-
stance would p-values be needed
to assist in interpretation of
these data. However, as the
number of patients randomized
is allowed to converge from the
opposite extremes of 800 and 8
toward some middle ground, we
would rapidly encounter the lim-
its of our mathematical intuition.
In this intermediate zone, where
most data reside, the p-value
serves as a statistical guidepost,
providing a sense of whether the
observed differences in mortality
are likely to represent a treat-
ment effect or chance event.

ROLE OF P-VALUES IN
CLASSIC HYPOTHESIS

TESTING

p-values are an integral part of
classic hypothesis testing, which
proceeds in the following step-
wise fashion.1–3

First, we choose a null hy-
pothesis, stated as a proposition
contrary to that which we hope
to find. Thus, if we wish to iden-
tify a difference in a variable of
interest between two groups, say

age, the null hypothesis asserts
that there is no age difference
between the groups. That which
we hope to prove—a difference
in age—is known as the alter-
native hypothesis. The formal
logic underlying this construct is
proof by contradiction.3 If a valid
argument logically contradicts a
stated premise, we conclude that
the premise must be false. If only
two outcomes are possible, rejec-
tion of the null implies accep-
tance of its alternative. There-
fore, either we reject the null—
and by definition accept the
alternative hypothesis—or we
fail to reject the null hypothesis,
and therefore cannot embrace its
logical alternative.

The second step in hypothesis
testing entails selection of an ap-
propriate test statistic. For de-
tecting differences between
groups with respect to a contin-
uous variable such as age, the t-
test is typically used.4 If the data
are non-normally distributed
small samples, a nonparametric
test such as the Wilcoxon-Mann-
Whitney would be a more appro-
priate choice.5

Third, the probability distri-
bution of the chosen test statistic
is examined under the null hy-
pothesis. For parametric tests,
such as the t-test, the distribu-
tion is based upon a theoretical
mathematical model requiring
that the data configuration meet
certain underlying assump-
tions.4,6 For nonparametric tests,
the distribution of the statistic is
derived from combinations/per-
mutations of the data itself with-
out theoretical constraints.1,5

With the widespread availability
of p-values as an intrinsic com-
ponent of the output from virtu-
ally all statistical software pack-
ages, this third step in classic
hypothesis testing has become
invisible. However, it remains
conceptually important, since
failure to choose a test statistic
appropriate for the data set un-
der examination can substan-
tially distort results.
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Fourth, we decide whether
the p-value should be one- or
two-tailed.7 Although the two-
tailed value is almost always
chosen, it is entirely appropriate
to use a one-tailed p-value if the
investigator is concerned only
with a unilateral difference.3,7

For example, among patients
with a disease carrying a 100%
mortality, one would be inter-
ested only in improved survival
among those randomized to the
treatment arm of a clinical trial
(since treatment cannot push the
mortality beyond the 100% ceil-
ing that already exists in the
control group). The advantage of
a one-tailed p is that fewer pa-
tients are required in the sample
size calculation than for the tra-
ditional two-sided p.2

Fifth, one chooses an a level
for p. This level becomes the
threshold criterion below which
the null hypothesis is rejected.3

By convention, this value of a
has been arbitrarily set at p <
0.05 for most of this century.1 Al-
legedly based upon an offhand
comment made by Sir Ronald
Fisher (of the Fisher’s exact
test), this arbitrary cut-point
has, for no apparent or rational
reason, very nearly achieved the
status of an immutable con-
stant.1

Based upon the foregoing five
steps, we arrive finally at one of
two conclusions: Either 1) the p-
value is below the chosen a level,
the null hypothesis is rejected,
the alternative hypothesis is ac-
cepted, and statistical signifi-
cance is declared; or 2) the p-
value exceeds or equals a, the
null hypothesis is conceded, the
alternative hypothesis is unsup-
ported and the results are
deemed statistically nonsignifi-
cant.1,2,3,7

Whatever the historical deri-
vation of p < 0.05 might have
been, blind adherence to a single,
arbitrary, context-insensitive
cut-point as the sole criterion for
identification of statistical signif-
icance prompted Feinstein to

characterize p < 0.05 as ‘‘the
threshold for decerebrate genu-
flection’’ (Feinstein AR, personal
communication, 1990). The prob-
lem with p < 0.05 lies not in the
value itself, but rather in dichot-
omizing any distribution of contin-
uous data. Referred to in diagnos-
tic testing as the ‘‘single-cutoff
trap,’’ 8 reduction of continuous
data to binary categories not only
markedly decreases the informa-
tion contained in the native data
set, but may also misrepresent its
content.8

INTERPRETATION OF
P-VALUES

Much of the difficulty in inter-
preting p-values arises from two
sources. The first, which is
closely linked to statistical a and
b error, represents a failure to
distinguish between clinical (or
quantitative) importance and
statistical significance. Because
the p-value not only is deter-
mined by the clinical magnitude
of a finding, but is also strongly
influenced by sample size,1,3,7 a
marginal quantitative difference
accompanied by a sufficiently
large sample size can generate a
statistically significant p-value
that is clinically meaningless.
Conversely, given a quantita-
tively important difference, a
small or ‘‘underpowered’’ sample
size can produce a statistically
nonsignificant p-value.1,3,7

The second source of confu-
sion in interpretation of p-values
derives from a failure to recog-
nize that these probabilities are
not valid omnibus measures of
the strength of evidence support-
ing a finding. This is because p-
values, constrained as they are
by classic hypothesis testing, can
look only in the direction of the
null hypothesis. Thus, the com-
plement of the p-value (1 2 p)
will not necessarily represent
the probability that the alterna-
tive hypothesis is true or false.
This is because the degree of
truth or falsity of the alternative

hypothesis depends not only
upon the p-value associated with
the null hypothesis, but also
upon the independent prior prob-
ability of that specific alternative
hypothesis’s being true.3

MULTIPLE COMPARISONS

Multiple comparisons represent
an important additional source
of statistical false positives or a
errors deserving separate consid-
eration.3,6,7 This problem is less a
consequence of the nature of
probability than another artifact
of establishing an all-purpose
threshold p-value for declaration
of statistical significance. Each
time a comparison is undertaken
and deemed statistically signifi-
cant at the p < a (0.05) level,
there remains an a% (5%) prob-
ability that this represents a
false-positive finding. Because
the likelihood of obtaining a
false-positive finding increases
with each additional comparison,
some systematic adjustment pro-
portional to the number of tests
performed is needed. Otherwise,
obtaining a ‘‘statistically signifi-
cant’’ p-value will simply be a
matter of performing a sufficient
number of statistical tests. Un-
limited exploratory, data-driven
significance testing of a data set,
without adjustment for multiple
comparisons, is commonly re-
ferred to as data ‘‘dredging.’’1–3

Because of the high probability
of chance identification of spuri-
ous findings, unless prospective
validation of results on an inde-
pendent cohort is planned, such
an undertaking has limited sci-
entific merit.

Although a large number of
unplanned (post-hoc) tests seem
more prone to generation of
false-positive findings than a
small number of planned (a-
priori) ones, there is no general
agreement on how one should
decrement the value of a (p-
value) to adjust for multiple com-
parisons. The simplest strategy,
and one of the most commonly
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used, is the Bonferroni correc-
tion.2,6 The threshold value for
statistical significance, a (con-
ventionally p < 0.05), is simply
divided by the number of com-
parisons performed. The divi-
dend then becomes the new
threshold for declaring any sin-
gle observation to be statistically
significant. Thus, for five com-
parisons, the conventional
threshold for statistical signifi-
cance drops to 0.05/5 = 0.01, for
ten comparisons to 0.005, etc.

Many argue that this strategy
is too conservative and that
overadjustment for a error un-
duly increases the likelihood of
missing findings that may be im-
portant (increased false-negative
results or b error).1,2,6 An alter-
native, less conservative ap-
proach can be devised from esti-
mation of the probability of false
positives, p(FP), under condi-
tions where p is set at a = 0.05.
Thus, p(FP) = (1 2 0.95n), where
n is the number of comparisons.
Skipping the algebra, the gener-
alized formula for adjusting aadj

for n comparisons = {[a2]/[1 2 (1
2 a)n]}, in which a is tradition-
ally set at 0.05.4

For small numbers of compar-
isons, both adjustments provide
similar results. However, as the
number of tests increases, the
two adjustments diverge slightly,
e.g., for 20 tests, the Bonferroni-
adjusted p-value would be
0.0025, vs 0.004 for the alterna-
tive method.2,6

SIGNIFICANT AMBIGUITY

‘‘Significance’’ is a term contain-
ing such ambiguity that some
authors have suggested it be ex-
punged from the lexicon of both
science and statistics.9 Unfortu-
nately, it is deeply entrenched in
medicine, and for the foreseeable
future, we appear to be stuck
with it. The simplest way to give
some meaning back to the term
‘‘significant’’ is to use it only with
such conditional modifiers as
‘‘clinical’’ or ‘‘statistical.’’1,3

As noted earlier, p-values pro-
vide assistance only in determi-
nation of statistical significance.
Used judiciously, i.e., nondi-
chotomously to avoid the single-
cutoff trap,8 and with appropri-
ate attention to sample size3 and
multiple comparisons,2,6 a prob-
abilistic assessment of the role of
chance in producing results can
be obtained. However, without a
concomitant and independent
determination of the quantita-
tive or clinical significance of a
given finding, statistical signifi-
cance, considered in isolation, is
at best ambiguous, and at worst
misleading.1

AN ALTERNATIVE TO
P-VALUES AND

SIGNIFICANCE TESTING

Many biomedical journals now
require authors to express their
findings using interval estima-
tion in preference to significance
testing, i.e., confidence intervals
(CIs) rather than (or in addition
to) p-values.10 This requirement
is based upon the superior infor-
mational content and configura-
tion of CIs, i.e., provision not
only of statistical information
but, more importantly, quantita-
tive/clinical information in an ec-
onomical, explicit, and precise
format.

Defined loosely, n% CIs (con-
ventionally 95% confidence inter-
vals) indicate that we can be
about n% certain that the ‘‘true’’
result of a methodologically valid
investigation lies within the lim-
its that bound this interval.10

Several of the specific advan-
tages of CIs over p-values in-
clude the following1,3:

As noted above, one of the
problems with freestanding p-
values is an inability to deter-
mine the extent to which their
magnitude is driven by observed
quantitative differences vs sam-
ple size.1,4 The CI, unlike the p-
value, is able to disentangle
these two constituent parts by
displaying the observed quanti-

tative difference as the point es-
timate.10 This estimate—which
represents the best, mathemati-
cally unbiased index of the dif-
ference between two groups un-
der comparison—stands alone
and can be viewed separately
from any statistical information
that might otherwise obscure it.
The sample size, rather than be-
ing buried within the p-value, is
inversely proportional to the
width of the CI, and can be de-
termined by direct inspection of
the distance between its bound-
aries.1

The relationship of confidence
limits to the null point (either
zero for means and proportions,
or unity for risks and ratios) pro-
vides additional information not
available from p-values. The fo-
cus, however, should not be on
whether the CI embraces the
null point, since that would
mean falling into the same sin-
gle-cutoff trap of p < 0.05,8 but
rather on the ‘‘tilt’’ of the inter-
val.3,10 Using the null point as a
fulcrum, examination of the di-
rection and extent to which the
interval is ‘‘leaning’’ can provide
a nearly graphical display of
study findings.10 For example, a
mean difference of 23 mm be-
tween two groups of patients on
a visual analog scale (VAS), fa-
voring RxB over RxA, accompa-
nied by a 95% CI of (22 mm to
47 mm) suggests that, with a few
more patients, there probably
would have been a statistically
significant difference to accom-
pany the quantitatively signifi-
cant difference of 23 mm. From
this alone, we might reasonably
conclude that, pending a larger
study or further information in
the form of a meta-analysis, RxB
ought to be administered to pa-
tients in preference to RxA. In
contrast, if we were using classic
hypothesis testing, and only p-
values were displayed, we might
easily reach the ‘‘b-erroneous’’
conclusion that RxA and RxB are
equianalgesic, if only ‘‘p > 0.05’’
is reported.3,10
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Similarly, if the relative risk
of admission associated with a
very expensive intervention RxA,
compared with an inexpensive
standard of care RxB, is reported
as 0.98 (95% CI = 0.97 to 0.99),
we might decide that the cost of
RxA was not worth the very mod-
est reduction in admission rate
—in spite of its exclusion of the
null point of 1 for relative risks.
With a sample large enough to
drive the p-value for a relative
risk down to, say p = 0.001
(which is entirely consistent with
an N of sufficient size to generate
such a precise CI), examination
of this p-value in isolation might
well lead us to conclude (this
time ‘‘a-erroneously’’) that the in-
vestment of resources in RxA
would be cost-effective.

Because interval estimation
and significance testing operate
under the same constraints of
probability, adjustment of CIs for
multiple comparisons, analogous
to that of p-values, seems appro-
priate.10 Although there is no
consensus on a methodology for
this, direct application of the
Bonferroni concept to CI has the
appeal of being straightfor-
ward.2,6 Similar to the propor-

tionate reduction in p-values ac-
cording to a/n for n comparisons,
increasing the precision of the CI
proportionate to [1 2 (a/n)]% is a
reasonable, though unproved,
strategy for reducing false-posi-
tive findings. Thus, if an inves-
tigator performs five unplanned
comparisons on a data set, the
traditional (1 2 a)% or 95% con-
fidence intervals typically used
for displaying findings should
perhaps be recalculated as [1 2
(a/5)]% = (1 2 [0.01]) = 99% CI.

Finally, it is worth remember-
ing that CIs, though substan-
tially more durable than p-val-
ues, are not immune to abuse.
Indeed, a 95% CI represents
nothing more than a level of
‘‘confidence’’ derived directly
from the complement of p < 0.05
through subtraction, i.e., (1 2
0.05) = 0.95 = 95%. Therefore, to
require that a CI exclude the
null as a prerequisite to careful
inspection of its point estimate,
confidence limits, and width is
not ‘‘significantly different’’ from
‘‘decerebrate genuflection’’ at a
threshold value of p < 0.05.—E.
JOHN GALLAGHER, MD, Depart-
ment of Emergency Medicine, Al-
bert Einstein College of Medicine,
Bronx, NY

Key words. p-value; p < 0.05; sig-
nificance; statistics; probability; hy-
pothesis testing.
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