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� Abstract: Conducting a clinical trial involves various
stages of planning and implementation. The three major
components involved in clinical trials are the management
of data, the quality control to ensure data integrity, and
the interpretation of the data at the conclusion of the trial.
Although each process is distinct and involves different levels
of effort and knowledge to implement, all processes are
intimately linked. Data management techniques include
the process of data entry and the implementation of an
organized, comprehensive approach to quality control. Some
guidelines for quality control screening are recommended
to address various common issues related to clinical data,
such as missing data, invalid cases, subject “outliers,” and
violation of distributional assumptions relevant to statistical
analyses. In order to aid in interpreting the data, conditions
that need to be met to make causal inferences are discussed.
Taking into account baseline characteristics of the patient
sample is also discussed as an extension to maintaining the
internal validity of the study. Additionally, some common
threats to statistical conclusion validity, including Type I error
inflation and the problem of overpowered tests, are high-
lighted. Finally, the concept of the effect size as an important
complement to statistical significance and how the various
types of effect size measures can be interpreted within the
context of a clinical trial are discussed. �
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INTRODUCTION

The last two decades have been marked by an increasing
emphasis on evidence-based medicine and employment
of rigorous research methods in both clinical research
and practice. As discussed by Lipman,1 clinicians and
researchers in the field of pain management have also
been active in implementing evidence-based guidelines
based on reviews of available evidence in the published
literature. Presently, an international collaborative
group is spearheading a comprehensive review of avail-
able evidence related to pain management as part of the
Cochrane Collaboration’s Pain, Palliative, and Support-
ive Care Group.2 However, along with the increasing
focus on the “end-product” of the evidence from clinical
research, the importance of the “front-end” mechanisms
and components of the research endeavor should also
not be neglected. Therefore, this section will elaborate
on several principles that are central to issues of data
management, quality control, and interpretation of the
data obtained from clinical trials.

Ban, Guy, and Wilson3 noted that of the three stages
of clinical trials corresponding to design, data collec-
tion, and data analysis, very little emphasis on the data
collection stage is provided in the published literature.
Unfortunately, not much has changed since 1983,
and relatively recent peer-reviewed publications on
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conducting clinical trials also focus on the design and
analysis stages (eg, see Harden & Bruehl4 and Mazum-
dar et al.5) However, this is understandable, given that
data collection and management strategies are often
dependent on organizational and logistic issues unique
to an individual clinical practice or research laboratory.
With this in mind, the subsequent sections will elaborate
on some general principles related to data management
and quality control that can be adapted to various set-
tings that conduct clinical trials. Furthermore, it should
be noted that these issues of management and quality
control of data naturally lend themselves toward the
ability to reliably interpret the data. In a similar vein as
the issues related to data collection and management,
the use of analytical techniques may also vary depending
on the nature of the data collected, the design of the
clinical trials, and the research questions and hypotheses
being tested. Therefore, a general overview of issues
related to interpretation of data from clinical trials is
presented following the discussion on data management
and quality control.

DATA MANAGEMENT

The first step in data management is establishing data
collection protocols that are relevant to the clinical
setting or research laboratory and the nature of the
clinical trial being conducted. The nature of data col-
lected often varies across several dimensions. This is an
especially unavoidable fact when conducting research
related to pain because pain is a complex biopsychoso-
cial phenomenon with an interaction of multifactorial
components consisting of physiological, psychological,
social, environmental, and medico-legal factors.6 Some
data may be obtained from patients’ medical history,
either from medical charts, large registries, or commu-
nication with patients’ primary physician. In addition,
data are also often collected in the form of question-
naires that tap into measures of pain, psychological
well-being, perceived disability, and health-related
quality of life. In some trials, functional capacity or
physiological data may be recorded from instruments
that output these measures into a computer file. Finally,
in those settings that do not require patients to be physi-
cally present at the clinic for follow-up evaluations,
data may be obtained through telephone interviews or
Internet-based, online data collection mechanisms.

Given this complex mix of data as described above,
it is advisable to compile and organize the data into a
single source that provides convenience of access and
reduces the possibility of error when trying to tap into

data from multiple sources for a given patient. Very
often, the first step in compiling a database of clinical
data is the process of data entry. Putting in place efficient
and careful data entry protocols is the first line of
defense against inaccurate interpretation at later stages
of the clinical trial. When manually entering data, a
general rule of thumb is to ensure all data from the
various sources are double-entered by at least two dif-
ferent research or clinical personnel. This process
ensures that transcribing errors can be detected and
corrected when the two data sets are compared.
However, in practice, large clinical trials may not have
the personnel, resources, or time to implement double
entry of data. In these cases, quality control mechanisms
in the form of random checking of electronic data
against the original hardcopy sources of data may be
warranted. If the data have already been previously
compiled into electronic files but are spread out across
multiple individual files, then merging the data elec-
tronically using commercial or freeware database utility
programs rather than attempting to manually enter all
the data again into a single electronic file may be helpful.

The choice of the electronic database program used to
manage and store data ultimately depends on the prefer-
ence of the primary investigator and the research person-
nel, the size of the clinical trial and amount of data
collected, budget constraints, and organizational policies
on software licensing and use. Simple clinical trials may
only require that data be entered into a standard spread-
sheet application, but more complex and larger trials
may require the functionalities of specific database utili-
ties. Fortunately, there is a wide selection of both com-
mercial and freeware database programs designed for the
purpose of managing data obtained from clinical trials. A
source that provides a comprehensive list of the available
database programs for clinical data management is pro-
vided in Recommended Resources section at the end of
this article. It should be kept in mind that both the
implementation time and licensing costs in the case of
commercial software, as initial investments for a good
database utility program, will certainly pay off in the
long run and ensure smoother, efficient access to data
for later stages of the clinical trial dealing with quality
control and analysis of data.

Finally, once the database has been put into place,
periodic backup of the electronic database file should be
implemented. The backup schedule may vary depending
on the needs of the research setting and the available
personnel resources, but having some form of backup is
certainly much better than no backup at all. In our
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experience, weekly backups of small data sets have been
implemented in our research laboratory. For data on our
larger clinical cohorts, the database file is hosted on a
server that is backed up nightly in an automated process
implemented by the in-house information technology
personnel. With the data organized into a single source,
the next step is to implement periodic quality control
screening of the data.

QUALITY CONTROL

Quality control mechanisms are critical in ensuring
accuracy of the data as well as the reliability and validity
of subsequent interpretation of the data. Depending on
the database software package implemented for use,
there may be several types of quality control screening
mechanisms built into the program. Therefore, it is a
good idea for the primary investigator and the associ-
ated research personnel to read the accompanying
product manuals and familiarize themselves with the
features of the database program. However, there are
some general principles of quality control screening that
can be implemented by using simple methods via a
spreadsheet application or data analysis software. In
general, to ensure reliability of interpretation, quality
control mechanisms involve the screening for the fol-
lowing problems: missing data, invalid cases or outliers,
and distributional assumptions.7

Missing Data

Missing data can occur for a variety of reasons, includ-
ing patient dropout during an intervention, noncom-
pliance with filling out self-report measures, missing or
misplaced questionnaire packets, gaps in a patient’s
medical history, or noncompliance during the follow-up
period. With large-cohort clinical trials, there would be
a logically greater likelihood of encountering these
issues with missing data. However, as noted by Tabach-
nick and Fidell,7 the amount of missing data is not so
much the problem as the pattern of missing data. A
general rule of thumb is that the threshold of concern
for missing data is 5% for each individual variable
within a data set, provided that the data are missing in
a random pattern.

Determining the amount of missing data is a simple
process that involves only dummy-coding a new binary
variable to reflect all the cases that do and do not have
missing data for each given variable in the data set.
For smaller data sets, a simple “eyeballing” of the data
set will suffice to determine the amount of missing
data. To test the randomness of missing data for those

variables that go beyond the 5% threshold, it is often
useful to utilize prepackaged Missing Value Analysis
utilities or computer macros that are available in most
major statistical analysis software packages. These
utilities for screening the randomness of missing data
conduct exhaustive pairwise comparisons of variables
and report significant P values for missing data pat-
terns that are correlated between or among sets of
variables.

In most cases where data are missing in small
amounts and in random, the best option in dealing with
these cases is usually the default option in major statis-
tical analysis packages, that is, by excluding the case
with the missing data from the analysis. However, as is
often the case with randomized controlled trials (RCTs),
a loss of even one or two cases in one group relative
to another group results in an unbalanced design. Such
instances are often handled by common statistical
adjustments for unequal sample sizes.7 These adjust-
ments ultimately depend on the nature of the analysis
and the test statistics used, and readers are provided
with resources on research design issues in the Recom-
mended Resources section of this article.

Another way of dealing with missing data is to
impute the missing values based on some reasonable
estimate. In clinical trials that experience patient
dropout sometime during the treatment and, hence,
unavailable for follow-up assessments, a common
method of imputing missing values is known as the last
observation carried forward (LOCF). The LOCF proce-
dure simply uses the last known value for a given vari-
able as the estimate of the missing data, under the
assumption that the measure would remain stable given
the dropout from the full treatment protocol.8 However,
studies on data simulation have revealed that the LOCF
method often results in an underestimated treatment
effect, and the impact on the power of tests and the
probability of making statistical conclusion errors are
greatly intensified when data are missing in a nonran-
dom pattern.9,10

More complex multivariate mechanisms for deal-
ing with missing data involve creating missing data
correlation matrices and regression-based estimation
methods and are extensively reviewed by Tabachnick
and Fidell,7 Mallinckrodt et al.,11 and Lane.10 However,
as noted by all these authors, none of these techniques
hold up very reliably when data are missing in a non-
random fashion. Such an issue is clearly related to the
design, planning, and execution of the clinical trial, and
no amount of statistical manipulation can provide a
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quick fix for sloppy data collection or poorly planned
and executed studies.

Invalid Cases and Outliers

Invalid cases can occur in one of two ways. As noted by
Nyiendo et al.,12 a common occurrence of invalid cases
in clinical trials is when patients who are not qualified
for treatment based on the study protocols are inadvert-
ently recruited for the clinical trial. For example, if an
intervention is targeting only a patient population that
has not received any prior surgery, an inclusion of a
small amount of surgical patients may end up biasing
the results of the study. Prior to any analyses, a quick
review of the characteristics of the patient cohort focus-
ing on information relevant to qualifying protocols will
provide an opportunity to flag these patients for
removal from the analyses.

A second occurrence of invalid cases may occur at
the level of the variable values. These can be generally
screened for by looking for outliers in the data set. One
instance of an outlier corresponds to values that are out
of range. For example, if a measure of pain intensity
ranges between values of 0 and 10, the value of 15
would be an outlying and invalid value on this variable.
Such cases may stem from mistakes in data entry or
from transcribing errors on the hard-copy source from
which the electronic data was sourced and entered.
Cross-referencing the hard-copy source may provide a
quick correction of the value, if the hard-copy source is
not in error in the first place. However, if the hard-copy
source also reports a value that is clearly out of range
and no other source of information is available to obtain
the correct value, then the offending value within that
variable for that particular case should be deleted in
order to exclude it from subsequent analyses.

Finally, another case of outliers corresponds to values
that are within the accurate range but may widely differ
from the majority of cases simply because of random
variation. For example, if at post-treatment all patients
report a pain intensity rating that, on average, corre-
sponds to the value of 2, an individual patient with a
pain intensity rating of 9 may be a large outlier within
the patient sample. If this outlying value is indeed accu-
rate, based on cross-referencing the original hard-copy
source, there are several available strategies in dealing
with this as discussed by Tabachnick and Fidell.7 For a
small number of outliers, one strategy is to simply delete
these outlying values, thus, excluding them from subse-
quent analysis. However, this strategy runs the risk of
biasing the results in the opposite direction. Further-

more, the outliers themselves may be of interest for a
variety of reasons relevant to some baseline character-
istics of the outlying patients; therefore, it may often be
a good idea to analyze these patients separately to look
for any factors that may be predicting the outlying
values. Another strategy to reduce the impact of outliers
may be to apply numerical transformations to all values
of the variable, that is, using square root or logarithm
transformations. The disadvantage with transforma-
tions, however, is that they do not always result in a
desirable distribution (sometimes making the scenario
worse) and are often difficult to interpret meaningfully
outside the properties of the statistical distribution
itself.7 If outliers do pose a significant problem in the
data, a final option available may be to utilize complex
robust estimation methods, such as Winsorized means
or maximum likelihood estimation, on a case-by-case
basis. Extensive discussions of robust estimation
methods and cases where they may apply can be found
in Hoaglin et al.13

Distributional Assumptions

Many of the commonly used statistical techniques rely
on some basic assumptions about the distribution of the
data. When distributional properties of the data depart
widely from these basic assumptions, there may be an
elevated risk of committing statistical conclusion errors,
such as Type I and Type II errors. Although this issue is
more closely related to interpretation of the data, it is
presented and discussed within the section of quality
control because some violations of these assumptions
(as in the case of normality) may require additional
recruitment of trial participants if the initial sample is
relatively small. Similarly, violation of these assump-
tions may also be related to issues such as outliers,
invalid values, or unbalanced sample sizes because of
dropouts. The three major distributional assumptions
relevant to conventional statistical techniques are nor-
mality, linearity, and homoskedasticity.7

The assumption of normality, as the name implies,
requires that the distribution of data values for a given
variable be approximately normally distributed, in the
form of a bell-shaped, symmetrical curve. Common
departures from normality often correspond to skew-
ness in the distribution, where one tail of the distribu-
tion is stretched in a particular direction either to the left
or right of the majority of data values. In clinical data,
such skewness may be a product of floor or ceiling
effects associated with self-report measures, or out-of-
range values because of data entry errors. Another type
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of departure from normality involves the concept of
kurtosis, a distributional property in which the tails of
the distribution are much thicker than that of a standard
normal distribution. While there are built-in statistical
tests for skewness and kurtosis available in most statis-
tical analysis packages, these are often not recom-
mended because of their overly sensitive nature to mild
departures from normality.7,14 Furthermore, almost all
conventionally used test-statistics, such as the t- and
F-statistics, are robust to substantial departures from
normality and do not impact the interpretation of
results. Additionally, an often neglected principle of sta-
tistical theory is the central limit theorem, which states
that, given a large enough sample, the sampling distri-
bution of means (upon which hypothesis tests are based)
is normally distributed regardless of the distribution of
the data values of the variable itself.15 The size of the
sample that can be considered sufficient, in terms of an
approximately normal sampling distribution, has been
demonstrated to be as little as 15 to 20 subjects,15 and,
in the case of analysis of variance (anova) techniques, a
degrees of freedom of 20 for the error term.7 Therefore,
there is little reason to fret over departures from nor-
mality. However, concerned researchers may want to try
numerical transformations to align the distribution of
their data closer to that of a normal curve, but the same
problems with transformations as discussed with outli-
ers apply here as well.

The assumption of linearity is concerned with a
straight-line relationship between the values of two vari-
ables. An examination of scatterplots with each variable
on a given axis of a 2-dimensional graph can indicate
any substantial departures from linearity.7 The problem
associated with departures from linearity can result in
the underestimation of correlation coefficients between
two variables. Furthermore, if a nonlinear relationship
exists between an independent/predictor variable and a
dependent/outcome variable, the power of the statistical
test may be substantially reduced. For substantial de-
partures from linearity, a reliable method that can
be applied in an analysis is to raise the power of
the data values of the offending variable (usually the
independent/predictor variable). For example, if the
relationship on the scatterplot indicates a quadratic-type
curved pattern, taking the square of the data values
would ensure a more accurate fit between the two vari-
ables. This will also avoid the problem of the statistical
test having reduced power.

The assumption of homoskedasticity is concerned
with a similar spread, or variability, in one variable

when compared with another variable. This is a consid-
eration when looking at two continuous variables,
with one being an independent/predictor variable while
the other a dependent/outcome variable. When the
independent/predictor variable is grouped, then
homoskedasticity is referred to as the assumption of
homogeneity of variance. Statistical tests for this
assumption are built into all statistical analysis packages
within each of the available parametric tests, and
readers are encouraged to utilize these tests when con-
ducting data analyses. Significant violations of this
assumption show up at the conventional significant P
value of <0.05. Violations of these assumptions often
occur as a result of non-normality and severely skewed
data. Furthermore, this violation may also occur as a
result of unbalanced sample sizes across groups being
investigated. In the case of two continuous variables, the
violation of this assumption can often be ignored, as it
only results in a slightly poorer fit in regression models.7

However, recent simulation studies reveal that in the
case of grouped data, violations of this assumption can
result in either lower power or increased probability of
Type I statistical conclusion error.14 Applying data trans-
formations or increasing the sample size (when possible)
may rectify the problem, but not always. Moreover, in
some cases, transformations or increases in sample size
may result in worse outcomes with regard to statistical
conclusion errors.14 Furthermore, in the case of multi-
variate analyses, trying to rectify violations observed in
pairwise comparison of variables may not necessarily
translate into satisfying the more complex assumptions
in a multivariate combination of variables.7 Therefore,
there are really no clear guidelines on a single bullet-
proof strategy when faced with a violation of homoge-
neity of variance. Given the complexity of the case when
this assumption is violated, it is the reasoned judgment
of the first author that, when faced with this situation in
the data, analyses should be conducted as one normally
would, but it should be noted in the results that viola-
tion of the assumption of homogeneity of variance was
present in the data, and P values should therefore be
interpreted with some level of caution.

An alternate approach to dealing with violations
of distributional assumptions can be addressed at the
analysis stage by using various nonparametric methods
of statistical analyses. Extensive discussions of the types
of analytical methods can be found in Gibbons and
Chakraborti16 and Wasserman.17 However, the above
discussion on the robustness of conventional parametric
statistical methods with regard to violation of assump-
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tions should be kept in mind. Furthermore, it should be
noted that nonparametric-based methods do come
at the price of reduced power for the statistical test.18

Additionally, a recent simulation study evaluating non-
parametric alternates to the analysis of covariance
(ancova) demonstrated that the ancova was generally
superior to nonparametric techniques even under con-
ditions of violated assumptions.19 Within this context, it
should also be noted that the ancova is among the
parametric statistical techniques with the most restric-
tive assumptions.7 Despite the temptation to automati-
cally assume that nonparametric statistics may be more
likely to yield significant P values relative to parametric
methods under violation of assumptions, it should be
kept in mind that research in clinical settings are less
about chasing after a significant P value and more about
demonstrating the efficacy and effectiveness of some
type of intervention; and as will be discussed in the next
section, statistically significant results can sometimes be
clinically meaningless.

INTERPRETATION OF DATA

With the advances in computing technology and the
evolution of statistical software packages, the process of
data analysis has become infinitely easier over the past
two decades. Modern data analysis packages offer a
graphic user interface that allows data to be analyzed
with the push of a button. However, even the most
advanced software package will fail miserably at being
able to apply reasoned judgments to the output of
results, dissecting and separating statistically significant
differences from clinically meaningful differences, and
then draw informed conclusions that add sound evi-
dence to the ever-increasing body of knowledge. The
major issues related to interpretation of results from
clinical trials can be classified as follows: inferences of
causality, controlling for baseline factors, statistical sig-
nificance, and interpreting the effect size. These issues
will be discussed within the context of a clinical trial.

Inferences of Causality

Causality refers to a situation where some sort of sys-
tematic variation in treatment (ie, analgesic drug vs.
placebo) can be inferred to have a direct causal relation-
ship with the difference in outcomes observed between
the treatment groups. In other words, if a statistically
significant difference is observed between the treatment
groups where the group receiving analgesic drugs
reported more positive outcomes than the placebo
group did, it can be concluded that the analgesic drug

caused the positive outcome. However, it should be
noted that it is not the statistical significance per se that
establishes a causal link between the drug and the posi-
tive outcomes. The basis for inferring causality is
pivoted upon the design of the study, through the use of
a well-designed RCT that rules out other factors that
may contribute to the difference in outcomes.

The ability to draw causal inferences from data
breaks down when there are threats to the internal
validity of the study. Internal validity is jeopardized
when factors other than the systematically manipulated
independent variable end up causing observed differ-
ences between treatment groups. As noted by Turk and
Rudy,18 examples of threats to internal validity include
instrumentation or calibration problems, memory-based
anchoring effects from repeated assessments, integrity of
treatment implementation, patient attrition or noncom-
pliance, crossover of patients between treatment groups,
and experimenter or patient expectancy effects. Prior to
conducting the trial, all these potential threats to inter-
nal validity should be addressed as part of the design
and implementation of the research protocols. In the
case of patient attrition and crossovers to another treat-
ment group, an intention-to-treat (ITT) analysis should
be incorporated as part of an RCT design. The ITT
analysis treats all patients as part of the trial and as part
of their assigned treatment group throughout the dura-
tion of the trial regardless of whether the patient has
dropped out or crossed over.20 Therefore, an ITT com-
ponent as part of the design of the trial would require
that data on all patients be collected throughout the
duration of the trial. If there are certain underlying and
unaddressed factors contributing to higher attrition or
crossover rates in one treatment group relative to
another, simply excluding the patients introduces a bias
that increases the probability of committing Type I sta-
tistical conclusion errors.20

While the major advantage of a well-designed RCT
provides the opportunity to draw causal inferences, it
should be noted that the implementation of an RCT
design per se does not guarantee the highest quality of
evidence if internal validity is jeopardized or the wrong
types of analyses are used.21,22 Furthermore, the inability
to utilize an RCT design does not absolutely disqualify
the quality of evidence that may be obtained from
certain well-designed nonrandomized trials.23 In certain
cases, randomly assigning patients to treatment groups
may not be feasible or even ethically or legally permis-
sible. When faced with such limitations, there are
several other methodologies that may be profitably used
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in designing the clinical trial. To aid with this purpose
and to qualify any evidence obtained from nonrandom-
ized designs, researchers should consult the criteria for
levels of evidence published by the Oxford Center for
Evidence-Based Medicine.24 While RCT designs are
rated as producing the highest level of evidence, these
are followed, in descending order of quality, by: retro-
spective and prospective nonrandomized cohort studies,
case-control designs, case series, and, finally, expert
opinion. While the last two types of studies fail to
provide reliable evidence, nonrandomized cohort
studies are common in the published literature on clini-
cal trials and, in some cases, have quality of evidence
similar to that of RCT designs.22 However, it should be
noted that if the clinical trial was not an RCT design, no
causal inferences should be made from the data. The
only inferences that can be made are of associations
between or among variables.

Controlling for Baseline Factors

Related to factors that can improve internal validity of a
study is the effort to take into account baseline charac-
teristics of the study sample. In almost all clinical trials,
baseline measures on certain constructs are often col-
lected. These may include initial pain scores, psychologi-
cal well-being, or health-related quality of life measures.
These same measures are subsequently collected at post-
treatment. As is often the case, baseline measures are
substantially correlated with subsequent post-treatment
because both are the same measures tapping into indi-
vidual differences on a given construct.25 The individual
differences present in the data contribute to “noise” or
the overall error variance in data analysis. In order to
reduce this error variance, thus, increasing the power of
the test, the baseline scores can be profitably utilized as
a covariate in an ancova. In this case, the individual
differences within the baseline measure (covariate) are
assessed as a systematic effect within the ancova, thus,
removing it from overall experimental error. Therefore,
in RCT designs, where it can be reasonably expected
that the baseline measure in each group does not sys-
tematically vary with respect to each other, an ancova
should be utilized as a statistical test of group differ-
ences on post-treatment measures.

Another case where the ancova may be useful is
to adjust for pre-existing baseline differences that are
significantly correlated with the outcome variable being
studied. These pre-existing differences between groups
often occur in nonrandomized studies, where naturally
occurring groups are used in the clinical trial.7,25

However, baseline differences may also be observed in
well-designed RCTs simply by virtue of chance. In this
second application of the ancova, the idea is to assess
group differences on post-treatment measures, assuming
that all patients in both groups were equal on the
baseline characteristic in question. Unfortunately, this
second approach to the ancova is not without its draw-
backs. Caution should be applied in interpreting the
results of an ancova if there is a reason to believe that
there is a causal link between the differences in the
baseline measures and the presence in a given group.25

In such cases, utilizing an ancova may remove some of
the systematic variance associated with the grouping
variable, thus, reducing the power of the test.

Statistical Significance

The statistical significance of a hypothesis test is a major
component of the decision making about whether a
given treatment is associated with differences in out-
comes relative to another type of treatment or control
group. A brief description of the types of statistical
conclusion errors and the power of statistical tests is
warranted to provide some context to the discussion in
the following sections.

Conventionally, the criterion for concluding a statis-
tically significant relation is a probability value, P, of
less than 0.05. This value represents the Type I error
rate of statistical conclusions, that is, the probability of
incorrectly concluding that there is a significant differ-
ence when no real differences exist (false positive). A
counterpart to the Type I error is the Type II error, which
corresponds to the probability of incorrectly concluding
no significant differences when real differences exist
(false negative). Related to the Type II error is the power
of the test, which is defined as 1 minus the probability of
a Type II error. Both the error rates are linked together
in a trade-off relationship. Lower values of Type I error
rates are associated with higher values of Type II error
rates. In practical terms, this implies that when a test is
more conservative (ie, a smaller Type I error), there will
exist a greater probability of not being able to detect
true differences (ie, a larger Type II error), thus, render-
ing the test less powerful. Conversely, if a test is more
liberal(ie, a larger Type I error), there will be a greater
probability of picking up trivial differences (ie, a lower
Type II error) with a highly powered test.

The desired power of the test should be addressed
earlier on during the design stage (and as a result, the
Type II error as well), thus, providing at least the
minimum required sample size for the trial. At the stage
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of the analysis, all hypothesis tests are usually conducted
at the conventional 0.05 level of the probability of a
Type I error. Therefore, any difference between groups
detected with a corresponding P value of less than 0.05
implies that there is less than a 5% chance of incorrectly
rejecting the null hypothesis, given that no true differ-
ences exist. However, researchers should guard against
potential inflation of the Type I error level during the
analysis, which can make hypothesis tests more liberal
than the conventional standard of a 0.05 probability
level. The primary source for this problem is when
multiple comparisons are conducted within the study.
Generally, this case occurs in designs with more than
two groups and where multiple exhaustive pairwise com-
parisons (or a subset thereof) are conducted on a
given dependent variable or outcome. Any such com-
parisons must be controlled for Type I error inflation.
The mechanisms for doing so are readily available in all
statistical software packages. A common error-
correction technique for multiple comparisons on a
given outcome variable is the Tukey’s Honestly Signifi-
cant Difference test for pairwise comparisons. The
Tukey Honestly Significant Difference test is a preferable
method of error correction because of its greater power,
compared with more conservative error correction tech-
niques such as the Bonferroni test.14

If comparison with a control group is desired rather
than multiple pairwise comparisons, then the Dunnet
test may be more appropriate for multiple comparisons
against a single control group. Apart from the straight-
forward case of multiple comparisons on a single
outcome variable, there is still considerable debate on
whether multiple tests on a range of different outcome
variables should be corrected for Type I error inflation.26

For example, if a study utilizes 5 outcome variables,
should each test be corrected for the total number of 5
tests being conducted in the study? Such corrections
often come at the expense of significantly reduced power
because of the smaller Type I error threshold, and, as
pointed out by Aicken and Gensler,26 these types of
stringent error-correction techniques may not warrant
for preliminary or exploratory studies.

Another issue concerning the significance of statisti-
cal tests is closely related to power and sample size.
While RCTs are generally moderate in their sample size
because of the logistics involved in designing and
executing the study, retrospective and prospective
cohort studies can often have sample sizes that run into
the thousands. Large sample sizes result in smaller stan-
dard error values in the sampling distribution of the

parameter estimate of a statistical test.15 Because power
is inversely related to the standard error, large sample
sizes can have a profound impact on the power of a test.
As a result, large sample studies are often overpowered
and have a high probability of picking up statistically
significant differences that are trivial in magnitude.
Therefore, it would not be very wise to rely solely on the
significance value of P < 0.05 for a hypothesis test when
running large sample studies. A statistically significant
difference may be a trivial difference within clinical con-
texts, that is, a 3-point difference on a depression scale
or a 1-point difference on a pain intensity scale. In such
cases, it is wiser to shift the interpretation away from P
values alone and start to look at standardized effect size
statistics that describe the relative magnitude of the
statistically significant effect.

Interpreting the Effect Size

As noted by Worzer et al.,27 the effect size is a simple and
well-established statistic for determining the practical
importance of statistically significant differences on
common measures used in clinical settings. Further-
more, it also facilitates a standardized comparison
across different studies that assess similar or related
constructs because the effect size is a standardized sta-
tistic that does not rely on raw score units. The type of
effect size measure to be used ultimately depends on the
nature of the data and the choice of analysis. In the most
general sense, effect sizes vary depending on whether
the analysis compares two continuous variables, a con-
tinuous variable between two groups, a continuous
measure across multiple groups, and two categorical (or
grouped) variables. The most common type of effect size
for each of these scenarios is discussed.

Pearson’s r. The Pearson’s product-moment correla-
tion coefficient, r, is the most basic form of an effect size,
and many of the other effect size measures can be
derived from it. It is best used to describe the magnitude
of association between two continuous variables. As
noted by Cohen,28 a general guide to interpreting the
magnitude of an effect using r can be defined as follows:
0.1 for a small effect, 0.3 for a medium effect, and 0.5
for a large effect. In practical terms, correlation coeffi-
cients of 0.1 or less can often be interpreted as being a
trivial association between two variables. However, one
should keep in mind that in large sample studies, a
correlation of around 0.1 may be statistically significant
simply because of the nature of an overpowered test.
Another common way of using the correlation coeffi-
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cient as an effect size is to square it and report the
coefficient of determination, r2. The coefficient of deter-
mination simply describes the percent of variance in one
variable accounted for by the other variable. For
example, a large correlation coefficient of 0.5 corre-
sponds to an r2 of 0.25, or 25% of the variance that
is shared between two variables. In clinical trials, a
common use of r as an effect size measure is when two
continuous variables are being evaluated in the study,
that is, when analgesic drug dosage is assessed for its
effect on post-treatment pain ratings. However, a major
weakness of using r as an effect size is that there must be
a fairly linear relationship between the two variables.
Departures from linearity in the association between
two variables results in an underestimate of the magni-
tude of effect because r captures the linear, straight-line
relationship between two variables.7

Cohen’s d. This effect size measure is most commonly
used for interpreting the analysis of two groups. It ap-
plies to both the independent-group’s t-test as well as
the paired-sample t-test. It is often provided as an option
within the t-test analysis of most statistical analysis soft-
ware packages but can also be computed easily by hand.
Cohen’s d is basically the difference between two group
means divided by an estimate of the variance. The esti-
mate of the variance will depend on the nature of the
design or the homogeneity of variances across the two
groups, with the baseline variance used as an estimate
when dealing with pre-versus-post comparisons and a
pooled variance estimate used when variances in the
groups are not homogenous.27 As noted by Cohen,28 the
d statistic is a standardized score and corresponds to
the following effect magnitudes: 0.2 for a small effect,
0.5 for a medium effect, and 0.8 for a large effect. For an
example in clinical trials, the Cohen’s d statistic will be
a useful complement to statistical tests assessing the
effect of treatment with an analgesic vs. a placebo on
post-treatment pain ratings. Caution should be exer-
cised when interpreting any statistically significant dif-
ferences when effect size magnitudes are close to 0.2 or
lower, especially in large sample studies.

Eta-Squared (h2). This effect size statistic, often
denoted in text as h2, is a common effect size measure
used in all the anova-related analysis techniques and is
a standard feature in all statistical software packages.
The value of h2 can range between 0 and 1 and corre-
sponds to the percent of variance in the dependent vari-
able accounted for by all the independent variables

assessed. For assessing the effect of individual indepen-
dent variables, the partial h2 is reported for each inde-
pendent variable in order to represent its unique
association with the outcome.7 Cohen’s28 guidelines for
interpreting effect size magnitudes of h2 are as follows:
0.01 for a small effect, 0.09 for a medium effect, and
0.25 for a large effect. Within the context of a clinical
trial, consider an analysis based on a two-factor anova
that assesses two different treatment modalities. The
second independent variable assessed, in order to deter-
mine if receiving compensation impacted response to the
treatment modalities (by testing the interaction of treat-
ment group by compensation status), was whether
patients were on any type of disability compensation.
Suppose that significant P values of <0.05 were reported
for both the effects of treatment group (partial
h2 = 0.15) and the treatment group by compensation
status interaction (partial h2 = 0.02). On the basis of
significant P values alone, one would conclude that,
while there was an overall difference in the outcome
measure based on the type of treatment modality, receiv-
ing disability compensation moderates a patient’s
response to the treatment. However, upon looking at the
effect size statistics, one observes a very weak associa-
tion between the interaction effect and the outcome.
Therefore, a discussion of the results should note that
much stronger evidence is needed on the role played by
disability compensation before any conclusions can be
drawn about its impact on the response to the treatment
modalities.

The Odds Ratio and Phi. Both these effect size mea-
sures are appropriate for describing the association
between two categorical variables when conducting sig-
nificance tests using the c2-test statistic. The odds ratio
is the more common effect size measure reported in
medical journals when evaluating binary variables (ie,
the variable can take on one of two values, such as
presence or absence of disease). Consider the case of two
randomly assigned treatment groups (interdisciplinary
pain management vs. standard primary care) assessed
for the effect of predicting surgery rates during a 2-year
follow-up period. At the end of the follow-up period,
it was determined that 25 out of 50 patients in the
standard care group ended up receiving surgery (an odds
of 1 patient receiving surgery for every 1 patient who
did not receive surgery), while only 10 out of 50 patients
in the interdisciplinary treatment group received surgery
(an odds of 0.25 to 1, or 4 patients not receiving surgery
for every 1 patient who did receive surgery). Therefore,

Data Management and Interpretation • 469



the odds ratio is simply 1 divided by 0.25. Given a
significant P value of <0.05 for the c2-test, it can be
interpreted that the standard care group had 4 times
greater odds of receiving surgery during the 2-year
follow-up period, relative to the interdisciplinary reha-
bilitation group. However, it should be noted that there
are no standardized benchmark values for interpreting
the magnitude of the odds ratio. Therefore, using the phi
statistic in addition to the odds ratio can provide an
alternate effect size measure that also corresponds to
standardized effect size magnitudes. Another advantage
of the phi statistic is that it can be generalized to more
than just binary variables by using the Cramer’s phi
statistic, and can handle multiple categories on either
variable.15 The phi and Cramer’s phi statistics are also
provided in all statistical software packages within
the c2 analysis. In order to determine standardized
effect size magnitudes for these phi statistics, they are
first converted into Cohen’s28 w-index, given by the
equation:

w phi k= ∗ −( )1 , (1)

where k corresponds to whichever is the smaller in the
number of rows or columns (ie, the number of catego-
ries in either variable). The w-index then corresponds to
the following effect size magnitudes: 0.1 to 0.3 for small
effects, 0.3 to 0.5 for medium effects, and >0.5 for large
effects.

SUMMARY AND CONCLUSIONS

This article focused on three major aspects of conduct-
ing a clinical trial. Data management plays a major
role in facilitating accurate and reliable access to clini-
cal data. Therefore, great care should be placed at the
outset, before the trial begins, in planning the data col-
lection and management strategies. While the specifics
will vary across different settings, a common rule of
thumb is to have trained personnel handle data entry
meticulously and to have proper organization and
storage of data in a central database. Once the data
management protocols are implemented and the trial
begins, periodic quality control should be conducted in
order to maintain the integrity of the database. Prior
to conducting any analyses, problems related to
missing data, invalid values, outliers, and violations of
distributional assumptions should be identified and
addressed.

Upon analyzing the data and reviewing the results,
one should be careful not to infer causality if the study

was not based on an RCT. If the study was not an RCT,
then conclusions about causal relationships should be
avoided. Furthermore, it is advisable to assess if any
previously unidentified threats to internal validity may
undermine the conclusions that can be drawn. These
may include statistically controlling for any baseline
differences that may exist between treatment groups. In
addition, if an ITT protocol was included as part of the
study, all patients should be included in the analysis,
regardless of whether they dropped out or crossed over
to a different treatment group within the trial. Threats
to statistical conclusion validity should be kept in mind,
especially if multiple comparisons are utilized or if the
study consisted of a large sample resulting in overpow-
ered tests. Finally, interpretation of the data should not
only be limited to conclusions drawn from statistical
significance but also needs to incorporate the magnitude
of observed effect in order to avoid emphasizing poten-
tially trivial results.

While it is impossible to address every little detail
that goes into conducting a clinical trial and interpret-
ing the data, the discussion in this article provides some
general guidelines that clinical practitioners and
researchers may adopt for their own research projects
within the clinical setting. A Recommended Resources
section is provided to guide readers to the more detail-
oriented aspects of conducting a clinical trial.
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Appendix

Recommended Resources

1. Capterra, Inc.—Clinical Trial Management Soft-
ware Directory. http://www.capterra.com/clinical-
trial-management-software

2. Keppel G, Wickens T. Design and Analysis: A
Researcher’s Handbook. 4th ed. New Jersey: Pren-
tice Hall; 2004.

3. Nyiendo J, Attwood M, Lloyd C, Ganger B, Haas
M. (2002). Data management in practice-based
research. J Manipulative Physiol Ther. 2002;25(1):
49–57.

4. Oxford Centre for Evidence-Based Medicine—
Levels of Evidence. http://www.cebm.net/index.
aspx?o=1025
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