Introduction to Statistics

Roger J. Lewis, MD, PhD
Department of Emergency Medicine
Harbor-UCLA Medical Center
Torrance, California

Classical Hypothesis Testing: Introduction

- A statistical plan or method for deciding which of two hypotheses is best supported by the data
- Uses a p value as the measure of the strength of evidence against one of the hypotheses

Classical Hypothesis Testing: The Null Hypotheses

- The hypothesis that there is no difference between the two groups to be compared, with respect to the measured variable
- Must be defined prior to data collection
- Must pass the "so what" test

Classical Hypothesis Testing: The Alternative Hypothesis

- The hypothesis that there is a difference between the two groups to be compared, with respect to the measured variable
- The size of the difference should be defined prior to data collection

Classical Hypothesis Testing: The Alternative Hypothesis

- The difference defined by the alternative hypothesis is usually the minimum clinically significant difference
- A larger difference is sometimes sought, if detecting the minimum clinically significant difference would require too large a study

Classical Hypothesis Testing: The *p* Value

- The null hypothesis is "tested" to determine which hypothesis (null or alternative) will be accepted as true
- Calculate the probability of obtaining the results observed, or results more inconsistent with the null hypothesis, if the null hypothesis were true
- This probability is the *p* value

Classical Hypothesis Testing: Rejecting the Null Hypothesis

- If the p value is less than some predetermined value, α, then the null hypothesis is rejected
- If the null hypothesis is rejected, then the alternative hypothesis is accepted as true
- Note that the alternative hypothesis is not directly tested

Classical Hypothesis Testing: Steps

- 1. Define the null hypothesis
- 2. Define the alternative hypothesis
- 3. Calculate a *p* value
- 4. Accept or reject the null hypothesis
- 5. Accept the alternative hypothesis if the null hypothesis is rejected

Classical Hypothesis Testing: Type I Error

- Concluding that a difference exists when it does not
- A false positive
- Occurs when a statistically significant p value ($p < \alpha$) is obtained when the two groups are not different
- The risk of a type I error, assuming there is no underlying difference, is α

Classical Hypothesis Testing: Type II Error

- Concluding that a difference does not exist, when a difference equal to the alternative hypothesis does exist
- A false negative
- Occurs when a p value $> \alpha$ is obtained, yet the two groups are different
- The risk of a type II error, assuming there is a difference, is β

Classical Hypothesis Testing: Power

- The chance of obtaining a statistically significant *p* value, if a true difference exists that is equal to that defined by the alternative hypothesis
- Power = 1β
- Power is determined by sample size, the magnitude of the difference sought, and by α

Steps in Sample Size Determination

- 1. Define the type of data (continuous, ordinal, categorical, etc.)
- 2. Define the size of the difference sought
- 3. Define α , the maximum significant p value
- 4. Determine the power desired (usually 0.80 or 0.95)
- 5. Look up the sample size in tables, or use published formulas or software

	Statistica	al Tests
Test	Comparison	Principal Assumptions
Student's t test	Means of two groups	Continuous variable, normally distributed, equal variance
Wilcoxon rank sum	Medians of two groups	Continuous variable
Chi-square	Proportions	Categorical variable, more than 5 patients in any particular "cell"
Fisher's exact	Proportions	Categorical variable

Statistical Tests (Continued)

Test Comparison Principal Assumptions Continuous variable, One-way Means of three ANOVÁ normally distributed, or more groups equal variance in all groups Continuous variable Medians of three Kruskal-Wallis or more groups

Parametric vs Non-Parametric Tests

Parametric Test

Student's t test

→ Wilcoxon rank sum

One-way ANOVA → Kruskal-Wallis

Pearson correlation → Spearman rank correlation

Confidence Intervals: Example

- Purpose: to compare the effects of vasopressor A (V_A) and vasopressor B (V_B) based on post-treatment SBP in hypotensive patients
- Endpoint: post-treatment SBP
- Null hypothesis: Mean SBP_A = Mean SBP_B
- Results: Mean SBP_A = 70 mm Hg (after V_A) Mean SBP_B = 95 mm Hg (after V_B) Observed difference = 25 mm Hg (p < 0.05) 25 mm Hg is the "point estimate"

Limitations of the p Value

- *p* < 0.05 tells us that the observed treatment difference is "statistically significantly" different than zero
- p < 0.05 does not tell us:
 - The uncertainty in the size of the true treatment effect
 - The likelihood that the true treatment effect is clinically important

The Point Estimate and the CI

• When using CIs, we would report the point estimate and the limits of the CI surrounding the point estimate, for example: 25 mm Hg (95% CI 5 to 44 mm Hg)

The Point Estimate and the CI

- Together, the point estimate and CI tell us:
 - The statistical significance of the difference (does the CI include zero?)
 - The size of the observed treatment effect
 - The uncertainty in the size of the true treatment effect
 - The likely clinical importance of the true treatment effect

Interpretation of the CI

- Even if the data did not show a statistically significant difference, the CI can tell us if:
 - There probably really isn't a clinicallyimportant difference between the treatments; or
 - There were not enough patients to reliably detect a clinically-important difference even if it really exists

Interpretation of the CI

• Even if the CI includes 0, if it also includes clinically important values, then potential benefit has not been ruled out

• Even if the CI does not include 0, if it includes clinically unimportant values then benefit has not been unequivocally established

Interpretation of the CI

- Consider the comparison of vasopressor A and vasopressor B
- A difference of 0 is the null hypothesis
- Since the 95% CI, 5 to 44 mm Hg doesn't include 0, this is equivalent to p < 0.05
- Remember that for an odds ratio (OR) or a relative risk (RR) a value of 1 is equivalent to no difference

Interpretation of the CI

• Although the point estimate for the difference is 25 mm Hg, the results are consistent with the true difference being anywhere between 5 and 44 mm Hg 5 25 44

• Based on our own judgement of the minimum true difference that justifies a change in clinical practice, considering side effects, cost, etc., this may or may not justify a change in practice

Why a 95% CI?

• The selection of 95% CIs (as opposed to 99% CIs, for example) is arbitrary, like the selection of 0.05 as the cutoff for a statistically significant *p* value

Multiple Comparisons

- When two identical groups of patients are compared, there is a chance (α) that a statistically significant p value will be obtained (type I error)
- When multiple comparisons are performed, the risk of one or more false-positive p values is increased
- Multiple comparisons include:
 - Pair-wise comparisons of more than two groups
 - The comparison of multiple characteristics between two groups
 - The comparison of two groups at multiple time points

Multiple Comparisons: Risk of ≥ 1 False Positive

Number of Comparisons	Probability of at Least One Type I Error
1	0.05
2	0.10
3	0.14
4	0.19
5	0.23
10	0.40
20	0.64
30	0.79

Assumes α = 0.05, uncorrelated comparisons

Multiple Comparisons: Bonferroni Correction

- A method for reducing the overall risk of a type I error when making multiple comparisons
- The overall (study-wise) type I error risk desired (e.g., 0.05) is divided by the number of tests, and this new value is used as the α for each individual test
- Controls the type I error risk, but reduces the power (increased type II error risk)

Multiple Comparisons: Tests for Three or More Groups

- Analysis of Variance (ANOVA)
- Kruskal-Wallis test
- · Chi-square test
- Fisher's exact test
- ⇒ These tests do not use the Bonferroni correction; they test the hypothesis that all groups are the same, and they preserve power

Interim Data Analyses: Ethical Motivation

- During a clinical trial, data accumulate sequentially
- If you were the last patient to be enrolled, wouldn't you want to know the treatment assignments and outcomes of the prior patients?
- Interim analyses are used to see if a difference clearly exists between the two groups, so the trial can be stopped early, and future patients can receive the best treatment
 - In other words, to stop the trial as soon as a reliable conclusion can be drawn from the available data

Interim Data Analyses: Statistical Considerations

- Interim data analyses are a type of multiple comparison
- Interim analyses must be planned in advance, including the amount of type I error risk to be taken at each analysis
- Large studies and studies of diseases with high morbidity and mortality should include planned interim analyses

Nominal α Levels

- α values (the maximum significant p value) for each interim analysis are adjusted downward, so that the true type I error rate for the entire study is 0.05
- Different patterns of nominal α values can be used:
 - Pocock design: constant α values
 - O'Brien-Fleming design: larger α values as trial progresses
 - Greater power for a given maximum N
 - More conservative at the beginning

Max No.		Pocock O'Brien-Fleming	
Groups	Analysis	α_{i}	α_{i}
2	Interim 1	.0294	.0052
	Final	.0294	.0480
3	Interim 1	.0221	.0005
	Interim 2	.0221	.0141 > 0.05
	Final	.0221	.0451
4	Interim 1	.0182	5E-5
	Interim 2	.0182	.0042
	Interim 3	.0182	.0194
	Final	.0182	.0430

Subgroup Analysis: Motivation

- Patient populations are heterogeneous, composed of subgroups
- This is especially true for populations of emergency department patients
- A treatment effect detected in the entire population may or may not exist for a particular subgroup
- Data from subgroups are often clinically important and analyzed separately

Subgroup Analysis: Problems

- Analysis of multiple subgroups requires the use of multiple comparisons, increasing the overall risk of a type I error
- Since each subgroup is smaller than the whole study population, the power of subgroup comparisons is smaller, increasing the risk of type II error
- These problems occur even if the subgroups were defined prior to data collection

Subgroup Analysis: Problems

- Proper subgroup: Defined by characteristics available at enrollment, or which are not modified by the treatments being compared
- Improper subgroup: Defined by characteristics that can, in principle, be affected by study procedures or the treatments being compared
- Many retrospective studies include comparisons of improper subgroups (e.g., subgroup with "refractory shock")

James Stein Effect and Subgroups

- Even if the treatment works equally well in all subgroups, there will tend to be a "spread" in the apparent treatment effect when we analyze the data
- Similarly, the sizes of treatment effects are too "spread out" when we analyze the effect in each subgroup separately
- This is the James Stein effect

The James-Stein Estimator

- Naïve approach: simply calculate the actual differences in outcomes, sound sophisticated by calling these the maximum likelihood estimates of the treatment effects, and use these values as the estimates
- James-Stein estimator:

$$JS_i = \overline{X} + c(X_i - \overline{X})$$
, where $c < 1$

• Best estimates are "shrunk" towards the group average

Efron B, Morris C. Stein's paradox in statistics. Scientific American 1977;236:119-127.

Treatment Estimates in Subgroups

- The best estimate of the true treatment effect in a subgroup is not the treatment effect observed in that subgroup, if there are 3 or more subgroups
- The James-Stein estimator was discovered 50 years ago, and yet we continue to report naïve estimates of treatment effects in subgroups

Example: Pediatric Airway Study

- Comparative trial of endotracheal intubation (ET) and bag-valve-mask ventillation (BVM) in the prehospital treatment of critically ill children
- Primary outcome: survival to hospital discharge
- Overall result: no improvement in survival
- Some evidence of harm and some evidence of benefit in clinically important subgroups, defined *a priori*

Gausche M, et al. Effect of out-of-hospital pediatric endotracheal intubation on survival and neurological outcome: a controlled clinical trial. JAMA 2000;283:783-790.

Determinants of Efficacy

- The effectiveness or efficacy of a therapy is determined by:
 - one's ability to administer the therapy to the patient or to get the patient to take the medication (i.e., "compliance")
 - inherent or "chemical efficacy"
 - other patient characteristics that you may not be able to anticipate, measure, or control

Compliance, Prognosis, and Bias

- Compliant and noncompliant patients often differ in many characteristics, including prognosis
- Even in a randomized, double-blind study compliance is rarely equal in the different treatment groups
- This can potentially introduce bias, in that the non-compliant, poor-prognosis (or good-prognosis) subgroup will tend to leave one treatment more than the other

Intention-to-Treat Analysis: Motivation

- To estimate the effectiveness of a treatment in clinical practice, one must properly allow for differences in compliance
- This is the purpose of the intention-to-treat principle

Intention-to-Treat Analysis: Definition

- Patients are considered to be members of the treatment group to which they are originally assigned, regardless of whether or not they receive that therapy
- In other words, patients are assigned to treatment groups according to the treatment they were intended to receive

Analysis by Treatment Received

- Patients are considered to be members of treatment groups based on what treatment they actually received
- Thus a patient assigned to an active drug treatment, who freely admits to ever taking any tablets, would be considered a member of the control group

Don't do this!

Intention-to-Treat Analysis: Example

- Intention-to-treat Analysis: Survival in ET group: 7.8% (9/116) Survival in BVM group: 9.6% (8/83)
- Analysis by treatment received:
 Survival in ET group: 2.0% (1/51)
 Survival in BVM group: 10.8% (16/148)
 - → Study would conclude that ET kills!
- Analysis by treatment received is misleading if there is a correlation between compliance and prognosis

Using Statistical Consultants: Guidelines (My Wish List)

- Define the most important question to be answered by the proposed study, in terms of measurable quantities
- For a comparative study: Define the size of the difference you wish to detect
- For an observational study: Define the precision with which you wish to measure the most important outcome

Using Statistical Consultants: Guidelines (Continued)

- Get as much information as possible about what you expect in the control group
- Define values for α and power, and the maximum sample size that is realistic
- Define clinically important subgroups of the population
- Determine whether there are multiple important comparisons

Using Statistical Consultants: Guidelines (Continued)

- Bring examples of published studies that illustrate the type of analysis you would like to perform at the end of the study
- Consider the feasibility of performing planned interim analyses of accumulating data