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Classical Hypothesis Testing:
Introduction

• A statistical plan or method for deciding 
which of two hypotheses is best 
supported by the data

• Uses a p value as the measure of the 
strength of evidence against one of the 
hypotheses

Classical Hypothesis Testing:
The Null Hypotheses

• The hypothesis that there is no 
difference between the two groups to 
be compared, with respect to the 
measured variable

• Must be defined prior to data collection
• Must pass the “so what” test

Classical Hypothesis Testing:
The Alternative Hypothesis

• The hypothesis that there is a difference 
between the two groups to be 
compared, with respect to the measured 
variable

• The size of the difference should be 
defined prior to data collection

Classical Hypothesis Testing:
The Alternative Hypothesis

• The difference defined by the alternative 
hypothesis is usually the minimum 
clinically significant difference

• A larger difference is sometimes sought, 
if detecting the minimum clinically 
significant difference would require too 
large a study
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Classical Hypothesis Testing:
The p Value

• The null hypothesis is "tested" to 
determine which hypothesis (null or 
alternative) will be accepted as true

• Calculate the probability of obtaining 
the results observed, or results more 
inconsistent with the null hypothesis, if
the null hypothesis were true

• This probability is the p value

Classical Hypothesis Testing:
Rejecting the Null Hypothesis

• If the p value is less than some 
predetermined value, α, then the null 
hypothesis is rejected

• If the null hypothesis is rejected, then the 
alternative hypothesis is accepted as true

• Note that the alternative hypothesis is not
directly tested

Classical Hypothesis Testing:
Steps

1. Define the null hypothesis
2. Define the alternative hypothesis
3. Calculate a p value
4. Accept or reject the null hypothesis
5. Accept the alternative hypothesis if 

the null hypothesis is rejected

Classical Hypothesis Testing:
Type I Error

• Concluding that a difference exists when 
it does not

• A false positive
• Occurs when a statistically significant p

value (p < α) is obtained when the two 
groups are not different

• The risk of a type I error, assuming there 
is no underlying difference, is α

Classical Hypothesis Testing:
Type II Error

• Concluding that a difference does not
exist, when a difference equal to the 
alternative hypothesis does exist

• A false negative
• Occurs when a  p value > α is obtained, 

yet the two groups are different
• The risk of a type II error, assuming there 

is a difference, is β

Classical Hypothesis Testing:
Power

• The chance of obtaining a statistically 
significant p value, if a true difference 
exists that is equal to that defined by the 
alternative hypothesis

• Power = 1 - β
• Power is determined by sample size, the 

magnitude of the difference sought, and 
by α
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Steps in Sample Size Determination
1. Define the type of data (continuous, 

ordinal, categorical, etc.)
2. Define the size of the difference sought
3. Define α, the maximum significant p

value
4. Determine the power desired (usually 0.80 

or 0.95)
5. Look up the sample size in tables, or use 

published formulas or software

Statistical Tests

Test Comparison Principal Assumptions

Student's
t test

Means of
two groups

Continuous variable,
normally distributed,
equal variance

Wilcoxon
rank sum

Medians of
two groups

Continuous variable

Chi-square Proportions Categorical variable,
more than 5 patients in
any particular "cell"

Fisher's
exact

Proportions Categorical variable

Statistical Tests (Continued)

Test Comparison Principal Assumptions
One-way
ANOVA

Kruskal-
Wallis

Means of three
or more groups

Continuous variable,
normally distributed,
equal variance in all
groups

Medians of three
or more groups

Continuous variable

Parametric vs Non-Parametric Tests

Parametric Test Non-Parametric Test

Student's t test

One-way ANOVA

Pearson correlation

Wilcoxon rank sum

Kruskal-Wallis

Spearman rank correlation

Confidence Intervals: Example

• Purpose: to compare the effects of 
vasopressor A (VA) and vasopressor B (VB) 
based on post-treatment SBP in hypotensive 
patients

• Endpoint: post-treatment SBP
• Null hypothesis: Mean SBPA = Mean SBPB
• Results: Mean SBPA = 70 mm Hg (after VA)

Mean SBPB = 95 mm Hg (after VB)
Observed difference = 25 mm Hg (p < 0.05)
25 mm Hg is the “point estimate”

Limitations of the p Value

• p < 0.05 tells us that the observed treatment 
difference is “statistically significantly”
different than zero

• p < 0.05 does not tell us:
– The uncertainty in the size of the true 

treatment effect
– The likelihood that the true treatment 

effect is clinically important
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The Point Estimate and the CI

• When using CIs, we would report the point 
estimate and the limits of the CI 
surrounding the point estimate, for example:  
25 mm Hg (95% CI 5 to 44 mm Hg)

The Point Estimate and the CI

• Together, the point estimate and CI tell us:
– The statistical significance of the 

difference (does the CI include zero?)
– The size of the observed treatment effect
– The uncertainty in the size of the true 

treatment effect
– The likely clinical importance of the true 

treatment effect

Interpretation of the CI

• Even if the data did not show a statistically 
significant difference, the CI can tell us if:
– There probably really isn’t a clinically-

important difference between the 
treatments; or

– There were not enough patients to 
reliably detect a clinically-important 
difference even if it really exists

Interpretation of the CI
• Even if the CI includes 0, if it also includes 

clinically important values, then potential 
benefit has not been ruled out

• Even if the CI does not include 0, if it 
includes clinically unimportant values then 
benefit has not been unequivocally 
established

0 CI

0 CI

Interpretation of the CI

• Consider the comparison of vasopressor A 
and vasopressor B

• A difference of 0 is the null hypothesis
• Since the 95% CI, 5 to 44 mm Hg doesn’t 

include 0, this is equivalent to p < 0.05
• Remember that for an odds ratio (OR) or a 

relative risk (RR) a value of 1 is equivalent 
to no difference

Interpretation of the CI

• Although the point estimate for the difference 
is 25 mm Hg, the results are consistent with 
the true difference being anywhere between 5 
and 44 mm Hg

• Based on our own judgement of the minimum 
true difference that justifies a change in 
clinical practice, considering side effects, cost, 
etc., this may or may not justify a change in 
practice

5      25    44
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Why a 95% CI?

• The selection of 95% CIs (as opposed to 
99% CIs, for example) is arbitrary, like the 
selection of 0.05 as the cutoff for a 
statistically significant p value

Multiple Comparisons
• When two identical groups of patients are compared, 

there is a chance (α) that a statistically significant p
value will be obtained (type I error)

• When multiple comparisons are performed, the risk 
of one or more false-positive p values is increased

• Multiple comparisons include:
– Pair-wise comparisons of more than two groups
– The comparison of multiple characteristics 

between two groups
– The comparison of two groups at multiple time 

points

Multiple Comparisons:
Risk of ≥ 1 False Positive

Number of
Comparisons

Probability of at
Least One Type I Error

1
2
3
4
5

10
20
30

0.05
0.10
0.14
0.19
0.23
0.40
0.64
0.79

Assumes α= 0.05, uncorrelated comparisons

Multiple Comparisons:
Bonferroni Correction

• A method for reducing the overall risk of a 
type I error when making multiple 
comparisons

• The overall (study-wise) type I error risk 
desired (e.g., 0.05) is divided by the number 
of tests, and this new value is used as the α
for each individual test

• Controls the type I error risk, but reduces 
the power (increased type II error risk)

Multiple Comparisons:
Tests for Three or More Groups
• Analysis of Variance (ANOVA)
• Kruskal-Wallis test
• Chi-square test
• Fisher's exact test

⇒ These tests do not use the Bonferroni 
correction; they test the hypothesis 
that all groups are the same, and they 
preserve power

Interim Data Analyses:
Ethical Motivation

• During a clinical trial, data accumulate 
sequentially

• If you were the last patient to be enrolled, 
wouldn't you want to know the treatment 
assignments and outcomes of the prior patients?

• Interim analyses are used to see if a difference 
clearly exists between the two groups, so the 
trial can be stopped early, and future patients 
can receive the best treatment
– In other words, to stop the trial as soon as a 

reliable conclusion can be drawn from the 
available data
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Interim Data Analyses:
Statistical Considerations

• Interim data analyses are a type of 
multiple comparison

• Interim analyses must be planned in 
advance, including the amount of type I 
error risk to be taken at each analysis

• Large studies and studies of diseases with 
high morbidity and mortality should 
include planned interim analyses

Group Sequential Trial with Three Interim 
Analysis and a Final Analysis

Begin 
Enrollment

Maximum
Sample

Size
Attained

Third
Interim

Analysis

Final
Analysis

Second
Interim

Analysis

First
Interim

Analysis

α1 α2 α3 α4

Nominal α Levels
• α values (the maximum significant p value) for 

each interim analysis are adjusted downward, so 
that the true type I error rate for the entire study 
is 0.05

• Different patterns of nominal α values can be 
used:
– Pocock design: constant α values
– O’Brien-Fleming design: larger α values as 

trial progresses
• Greater power for a given maximum N
• More conservative at the beginning

2

3

4

Interim 1
Final

Interim 1
Interim 2
Final

Interim 1
Interim 2
Interim 3
Final

.0294

.0294

.0221

.0221

.0221

.0182

.0182

.0182

.0182

.0052

.0480

.0005

.0141

.0451

5E-5
.0042
.0194
.0430

Max No.                         Pocock  O’Brien-Fleming
Groups      Analysis           αi                   αi

} > 0.05

Subgroup Analysis: Motivation
• Patient populations are heterogeneous, 

composed of subgroups
• This is especially true for populations of 

emergency department patients
• A treatment effect detected in the entire 

population may or may not exist for a 
particular subgroup

• Data from subgroups are often clinically 
important and analyzed separately

Subgroup Analysis: Problems
• Analysis of multiple subgroups requires the 

use of multiple comparisons, increasing the 
overall risk of a type I error

• Since each subgroup is smaller than the whole 
study population, the power of subgroup 
comparisons is smaller, increasing the risk of 
type II error

• These problems occur even if the subgroups 
were defined prior to data collection
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Subgroup Analysis: Problems
• Proper subgroup: Defined by characteristics 

available at enrollment, or which are not 
modified by the treatments being compared

• Improper subgroup: Defined by 
characteristics that can, in principle, be 
affected by study procedures or the 
treatments being compared

• Many retrospective studies include 
comparisons of improper subgroups (e.g., 
subgroup with “refractory shock”)

James Stein Effect and Subgroups
• Even if the treatment works equally well in 

all subgroups, there will tend to be a 
“spread” in the apparent treatment effect 
when we analyze the data

• Similarly, the sizes of treatment effects are 
too “spread out” when we analyze the effect 
in each subgroup separately

• This is the James Stein effect

The James-Stein Estimator
• Naïve approach: simply calculate the actual 

differences in outcomes, sound sophisticated by 
calling these the maximum likelihood estimates 
of the treatment effects, and use these values as 
the estimates

• James-Stein estimator:

• Best estimates are “shrunk” towards the group 
average
Efron B, Morris C. Stein’s paradox in statistics. Scientific American 1977;236:119-127.

( ),  where 1i iJS X c X X c= + − <

“Shrinkage”

X

iX

( )iX X−

iJS

( )ic X X−

Revised
Estimate

Initial
Estimate

Treatment Estimates in Subgroups

• The best estimate of the true treatment 
effect in a subgroup is not the treatment 
effect observed in that subgroup, if there are 
3 or more subgroups

• The James-Stein estimator was discovered 
50 years ago, and yet we continue to report 
naïve estimates of treatment effects in 
subgroups

Example: Pediatric Airway Study
• Comparative trial of endotracheal intubation 

(ET) and bag-valve-mask ventillation (BVM) in 
the prehospital treatment of critically ill children

• Primary outcome: survival to hospital discharge
• Overall result: no improvement in survival
• Some evidence of harm and some evidence of 

benefit in clinically important subgroups, 
defined a priori

Gausche M, et al.  Effect of out-of-hospital pediatric endotracheal intubation 
on survival and neurological outcome: a controlled clinical trial. JAMA 
2000;283:783-790.



8

E
st

im
at

ed
 O

dd
s 

R
at

io
fo

r T
re

at
m

en
t E

ffe
ct

0.01

0.1

1

10

Estimates from
Individual Subgroups

Estimates from
Hierarchical Bayesian

Model

Other Etiology

Multiple Trauma
Traumatic Brain Injury

Near Drowning
Cardiopulmonay Arrest

SIDS

Reactive Airway
Seizure

Foreign Body

Respiratory Arrest
Physical Abuse

What We
Report

The Best
Estimates

Determinants of Efficacy
• The effectiveness or efficacy of a therapy is 

determined by:
– one’s ability to administer the therapy to the 

patient or to get the patient to take the 
medication (i.e., “compliance”)

– inherent or “chemical efficacy”
– other patient characteristics that you may 

not be able to anticipate, measure, or control

Compliance, Prognosis, and Bias
• Compliant and noncompliant patients often 

differ in many characteristics, including 
prognosis

• Even in a randomized, double-blind study 
compliance is rarely equal in the different 
treatment groups

• This can potentially introduce bias, in that 
the non-compliant, poor-prognosis (or 
good-prognosis) subgroup will tend to leave 
one treatment more than the other

Intention-to-Treat Analysis:
Motivation

• To estimate the effectiveness of a treatment 
in clinical practice, one must properly 
allow for differences in compliance

• This is the purpose of the intention-to-treat 
principle

Intention-to-Treat Analysis:
Definition

• Patients are considered to be members of 
the treatment group to which they are 
originally assigned, regardless of whether 
or not they receive that therapy

• In other words, patients are assigned to 
treatment groups according to the 
treatment they were intended to receive

Analysis by Treatment Received
• Patients are considered to be members of 

treatment groups based on what treatment 
they actually received

• Thus a patient assigned to an active drug 
treatment, who freely admits to ever taking 
any tablets, would be considered a 
member of the control group

Don't do this!
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Example: Pediatric Airway Management

IntubatedIntubated
No      YesNo      Yes

NoNo
Lived   Lived   

YesYes

5656 22

00 00

IntubatedIntubated
No      YesNo      Yes

1919 88

88 11

IntubatedIntubated
No      YesNo      Yes

4141 3939

00 00

IntubatedIntubated
No      YesNo      Yes

1616 11

88 00

199 Patients199 Patients

83 Randomized83 Randomized
to BVM Ventilation to BVM Ventilation 

116 Randomized116 Randomized
to ET Intubation to ET Intubation 

58 with58 with
SIDSSIDS

80 with80 with
SIDSSIDS

25 with Closed 25 with Closed 
Head InjuryHead Injury

36 with Closed 36 with Closed 
Head InjuryHead Injury

NoNo
Lived   Lived   

YesYes

Intention-to-Treat Analysis: Example
• Intention-to-treat Analysis:

Survival in ET group: 7.8% (9/116)
Survival in BVM group: 9.6% (8/83)

• Analysis by treatment received:
Survival in ET group: 2.0% (1/51)
Survival in BVM group: 10.8% (16/148)
Study would conclude that ET kills!

• Analysis by treatment received is misleading if 
there is a correlation between compliance and 
prognosis

Using Statistical Consultants:
Guidelines (My Wish List)

• Define the most important question to be 
answered by the proposed study, in terms of 
measurable quantities

• For a comparative study: Define the size of 
the difference you wish to detect

• For an observational study: Define the 
precision with which you wish to measure the 
most important outcome

Using Statistical Consultants:
Guidelines  (Continued)

• Get as much information as possible about 
what you expect in the control group

• Define values for α and power, and the 
maximum sample size that is realistic

• Define clinically important subgroups of the 
population

• Determine whether there are multiple 
important comparisons

Using Statistical Consultants:
Guidelines  (Continued)

• Bring examples of published studies 
that illustrate the type of analysis you 
would like to perform at the end of the 
study

• Consider the feasibility of performing 
planned interim analyses of 
accumulating data


